img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vcv решил задачу "Ребус" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 52
всего попыток: 157
Задача опубликована: 03.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для натурального числа k обозначим

a_k = \cfrac{361984!}{k!(361984 - k)!}. 

Найдите наибольший общий делитель чисел a_1, a_3, a_5, \ldots, a_{361983}.

Задачу решили: 48
всего попыток: 238
Задача опубликована: 10.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите наибольшее натуральное a, для которого существует такое натуральное b, что ab+2a=b4a.

Задачу решили: 55
всего попыток: 67
Задача опубликована: 19.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Пусть t_1, t_2, \ldots, t_{1004} --- все натуральные числа, меньшие 2012 и взаимно простые с 2012. Найдите значение суммы дробных частей \sum \limits_{i = 1} ^{1004} \biggl\{\cfrac{523t_i}{2012}\biggr\}. (Здесь {x} обозначает дробную часть x, {x}=x-[x], где [x] наибольшее целое число, не превосходящее x (целая часть x).)

+ 9
+ЗАДАЧА 802. 20 чисел (Голованов А.)
  
Задачу решили: 41
всего попыток: 169
Задача опубликована: 12.10.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Саша задумал 20 натуральных чисел и вычислил все возможные произведения, составленные из пар задуманных чисел. Получилось 190 произведений. Найдите наибольшее число произведений гарантированно заканчивающихся на одну и ту же цифру.

(Хотелось бы иметь математическое решение, а не программу.)
Задачу решили: 33
всего попыток: 63
Задача опубликована: 19.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для двух натуральных x и k, рассмотрим два числа: x и (x+k). Определим функцию f(k)=i, где i - количество таких чисел xi, что и xi, и xi+k являются точными квадратами некоторых натуральных чисел. Например f(1)=0; f(3)=1 {x=1}; f(21)=2 {x1=4, x2=100} и т.д. В интервале 1<k<212 найдите все такие k, что f(k)=15. В ответе необходимо указать сумму всех таких k.

 

Задачу решили: 56
всего попыток: 202
Задача опубликована: 28.12.12 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Какое наименьшее количество составных чисел нужно выбрать из первых 1200 натуральных чисел, так чтобы среди них гарантированно были два числа с общим делителем большим 1. 

Задачу решили: 62
всего попыток: 89
Задача опубликована: 29.04.13 08:00
Прислал: type0796 img
Источник: "Высшая проба" 2013
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовём шестизначное число эльфийским, если модуль разности суммы первых трёх цифр и последних трёх цифр делится на 11. Сколько существует эльфийских шестизначных чисел?

Задачу решили: 101
всего попыток: 122
Задача опубликована: 20.01.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Среди чисел, записываемых только нулями и единицами, найдите наименьшее кратное 14.

Задачу решили: 68
всего попыток: 115
Задача опубликована: 12.02.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: PgpGerm (Георгий Иванов)

Обозначим a(n) сумму цифр натурального числа n. Найдите количество трехзначных чисел n, удовлетворяющих условию a(n) = a(2n) и все цифры которых нечетны.

Задачу решили: 48
всего попыток: 129
Задача опубликована: 07.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

n = 3 × 77. Найдите наибольший общий делитель 7n - 1 и 7n + 4949.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.