img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 21
всего попыток: 29
Задача опубликована: 31.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: vochfid

На сторонах AB, BC и CA треугольника ABC  расположены точки P, Q и R соответственно, при этом |AP| = |AR|, |BP| = |BQ| и |CQ| = |CR|. Какое максимальное количество разных наборов таких точек P, Q, R может существовать для протзвольного треугольника ABC?

Задачу решили: 45
всего попыток: 78
Задача опубликована: 05.02.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Найдите максимально возможную длину тени человека ростом 2 м. Землю считать идеальной сферой с радиусом 6400 км, которая освещается параллельными солнечными лучами. Ответ дайте в метрах, округлив до ближайшего целого.

Задачу решили: 58
всего попыток: 61
Задача опубликована: 12.02.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Из вершин B и D квадрата ABCD проведены отрезки к серединам противоположных сторон. В результате образовался четырехугольник BFDE.

Ромб в квадрате

Найдите отношение площади четырехугольника к площади квадрата.

Задачу решили: 21
всего попыток: 59
Задача опубликована: 14.02.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Цифоы на табло состоят из линейных световых сегментов, как показано на рисунке.

Табло

При переключении цифр часть сегментов загорается, часть гаснет, например, чтобы переключить 3 на 4, нужно провести 3 операции - один сегмент включить и два погасить. Чтобы последовательно показать все цифры и вернуться к начальной (01234567890), то необходимо некоторое количество операций. Найдите такую последовательность цифр (должны присутствовать все цифры по одному разу, кроме крайних - они показываются 2 раза), что число операций для их последовательного переключения было бы минимальным. Если таких последовательностей несколько, то укажите ту, которая представляет наименьшее число.

Задачу решили: 33
всего попыток: 45
Задача опубликована: 17.02.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Диагонали выпуклого четырехугольника ABCD пересекаются в точке Е, АВ=AD,CA-биссектриса угла С, угол ВАD=140 градусов, угол ВЕА=110 градусов.  Найти угол CDB в градусах.

Задачу решили: 46
всего попыток: 48
Задача опубликована: 24.02.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В тупоугольном равнобедренном треугольнике срединные перпендикуляры к боковым сторонам делят основание на три равные части. Найти угол при основании в градусах.

Задачу решили: 26
всего попыток: 45
Задача опубликована: 06.03.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В квадрате АBCD на диагонали АС отмечены точки Е, F так, что |AE|:|EF|:|FC|=5:11:4. Через эти точки и вершины квадрата проведены прямые, которые делят квадрат на 10 треугольников с наименьшими целочисленными площадями. Найти площадь этого квадрата.

Задачу решили: 39
всего попыток: 48
Задача опубликована: 30.03.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех натуральных четырехзначных чисел, в десятичной записи которых участвуют только цифры 1, 2, 3, 4, 5, причем каждая встречается не более одного раза?

Задачу решили: 40
всего попыток: 50
Задача опубликована: 01.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Сколько существует натуральных пятизначных чисел, которые заканчиваются на 6 и делятся на 3?

Задачу решили: 33
всего попыток: 51
Задача опубликована: 03.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколько существует натуральных пятизначных чисел, делящихся на 3, в десятичной записи которых встречается цифра 6?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.