Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
145
всего попыток:
233
Двое A и B играют в карты. Ставка в игре 1 рубль. Когда было сыграно ровно n игр, оказалось, что А выиграл 48 игр, а B выиграл 47 рублей. Чему равно n?
Задачу решили:
107
всего попыток:
193
В школе, где учится больше 225, но меньше 245 учеников, часть учеников являются отличниками, а остальные хорошистами. После контрольной работы 2/7 отличников стали хорошистами, а хорошисты так и остались хорошистами за исключением одного человека, который стал троечником. При этом хорошистов и отличников стало поровну. Сколько учеников могло быть в школе?
Задачу решили:
79
всего попыток:
88
Отрезки АС и ВD пересекаются в точке М, причем АВ = СD и угол АСD - прямой. Найдите минимальное значение отношения MD/MA.
Задачу решили:
88
всего попыток:
174
В Бразилии живет много-много диких обезьян. Каждый год 2 января всех обезьян пересчитывают. В 1999 году количество обезьян увеличилось по сравнению с 1998 года ровно на 5%. И в 2000-2003 годах прирост поголовья обезьян каждый год тоже составлял ровно 5%, причем, по данным переписи 2003 года, в стране проживало не более 5000000 диких обезьян. Сколько диких обезьян жило в Бразилии 2 января 2003 года?
Задачу решили:
130
всего попыток:
156
В мешке 100 котов — черных, белых и серых. Количество чёрных котов больше, чем удвоенное количество белых; утроенное количество белых котов больше, чем учетверённое количество серых; утроенное количество серых котов больше количества чёрных. Сколько котов черного цвета в мешке?
Задачу решили:
97
всего попыток:
201
Каждый житель острова людоедов принадлежит к одному из двух племён: рыцарей, которые всегда говорят правду, или лжецов, которые всегда лгут. Однажды 1000 островитян встали в круг, и каждый заявил: «Оба моих соседа не из моего племени». Какое наибольшее количество рыцарей могло стоять в кругу?
Задачу решили:
78
всего попыток:
98
Имеется три последовательных чётных числа. У первого из них нашли наибольший чётный собственный делитель, у второго — наибольший нечётный собственный делитель, у третьего — опять наибольший собственный чётный делитель. Известно, что сумма трёх полученных делителей быть равна 2013. Чему равно первое число последовательности ? (Делитель натурального числа называется собственным, если он отличен от 1 и этого числа)
Задачу решили:
119
всего попыток:
126
В параллелограмме ABCD со стороной AB = 1 точка M — середина стороны BC, а угол AMD составляет 90 градусов. Найдите сторону BC.
Задачу решили:
77
всего попыток:
117
Два лыжника ходят на лыжах по кольцевой трассе, половина которой представляет с собой подъем в гору, а половина — спуск с горы. На подъёме их скорости одинаковы и вчетверо меньше их скоростей на спуске. Минимальное отставание второго лыжника от первого равно 4 км, а максимальное — 13 км. Найдите длину трассы.
Задачу решили:
126
всего попыток:
189
Из квадрата вырезали меньший квадрат, одна из сторон которого лежит на стороне исходного квадрата. Периметр полученного восьмиугольника на 40% больше периметра исходного квадрата. На сколько процентов его площадь меньше площади исходного квадрата?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|