img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 116
всего попыток: 250
Задача опубликована: 17.11.10 08:00
Прислал: Busy_Beaver img
Источник: Кубок памяти Колмогорова
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

В кубике покрашено n рёбер, но неизвестно какие. При каком наименьшем n можно гарантировать, что найдется грань с четырьмя окрашенными ребрами?

Задачу решили: 96
всего попыток: 240
Задача опубликована: 20.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Mangoost (Сергей Савинов)

Чтобы отправить по почте письмо, используя только 8 и 15-центовые марки, обязательно придётся переплатить. Какое наибольшее число центов может составлять цена отправки этого письма без переплаты?

(Канадская математическая олимпиада)
Задачу решили: 166
всего попыток: 273
Задача опубликована: 21.11.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

На шахматной доске 8×8 проведена прямая линия, не проходящая через углы клеток. Какое наибольшее число клеток она может пересекать?

Задачу решили: 224
всего попыток: 266
Задача опубликована: 25.11.10 08:00
Прислала: Marishka24 img
Источник: Олимпиада ЮМШ
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zhekas (Евгений Сыромолотов)

Найдите самое маленькое натуральное число, имеющее сумму цифр 17, оканчивающееся на 17 и кратное 17.

Задачу решили: 57
всего попыток: 92
Задача опубликована: 01.12.10 12:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.

Задачу решили: 151
всего попыток: 213
Задача опубликована: 03.12.10 08:00
Прислала: Marishka24 img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Сколько чисел среди 1, 11, 111, … , 11..1 (2010 единиц) делится на 13?

Задачу решили: 117
всего попыток: 246
Задача опубликована: 06.12.10 08:00
Прислала: Marishka24 img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg

В ряду 10 монет. Сначала подряд лежат несколько (от 1 до 9) настоящих, которые весят по 10 граммов, а все следующие за ними — фальшивые, весящие по 9 граммов. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить, какие монеты — настоящие, а какие — фальшивые?

Задачу решили: 58
всего попыток: 118
Задача опубликована: 06.12.10 12:00
Прислала: Marishka24 img
Источник: Азиатско-Тихоокеанская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Найдите максимально возможное число членов последовательности, состоящей из таких ненулевых целых чисел, что сумма любых семи из них, идущих подряд, — положительна, а любых одиннадцати, идущих подряд, – отрицательна.

Задачу решили: 136
всего попыток: 344
Задача опубликована: 09.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Ленивый Аппроксидон решил укрепить здоровье, подтягиваясь на турнике. Всего он подтянулся 12 раз, при этом каждое следующее подтягивание приходилось на первое число следующего по алфавиту (русскому) месяца. Первый раз он подтянулся 1-го августа. Сколько месяцев прошло между первым и двенадцатым подтягиваниями Аппроксидона?

Задачу решили: 131
всего попыток: 176
Задача опубликована: 12.12.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Семь шахматистов сыграли турнир в один круг. (За победу начислялось 1 очко, за ничью — 1/2, за поражение — 0.) Победитель набрал в два раза больше очков, чем в сумме шахматисты, занявшие три последних места. Петя занял 4-е место, набрав три очка. Как он сыграл с занявшим 3-е место (1 — выиграл, 0 — проиграл, 1/2 — сыграл вничью)? 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.