Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
76
всего попыток:
185
Сколько целых положительных решений имеет уравнение:
Задачу решили:
91
всего попыток:
139
Внутри прямоугольника со сторонами 20 и 30 отмечена точка . Найдите минимальное значение выражения .
Задачу решили:
34
всего попыток:
63
На квадратном коврике со стороной 120 см есть несколько пятен, площадь каждого из которых не больше 36 см2. Известно, что любая прямая, параллельная одной из сторон квадрата, пересекает не более одного пятна. Сколько см2 может составлять наибольшая общая площадь всех пятен?
Задачу решили:
118
всего попыток:
127
В равенстве СТУПЕНЬКА=ТТППЬ×ТТППЬ каждая буква означает цифру, разные буквы — разные цифры. Нулей нет. Чему равна СТУПЕНЬКА?
Задачу решили:
50
всего попыток:
154
Внутри прямоугольного треугольника ABC нашлись две точки, одна из которых удалена от прямых AB, BC и CA на расстояния 20, 24 и 30 соответственно, а другая — на расстояния 30, 26 и 20. Найдите сумму всех возможных значений периметра треугольника ABC.
Задачу решили:
41
всего попыток:
213
Единичный вектор проектируется на прямые, содержащие диагонали правильного одиннадцатиугольника. Сумма указанных проекций образует вектор a. Найти максимальное значение длины вектора a.
Задачу решили:
51
всего попыток:
762
Даны чашечные весы, имеющие особенность — они могут выдержать ровно 3 взвешивания (неважно в каком порядке) неравных грузов, после чего ломаются. Одинаковые веса можно уравновешивать на этих весах бесконечное количество раз. Среди N монет есть одна фальшивая, вес которой меньше настоящих. Найдите максимальное N при котором можно найти фальшивую не более, чем за 7 взвешиваний на этих весах.
Задачу решили:
12
всего попыток:
49
На листе бумаги в форме равностороннего треугольника со стороной 30 см разбрызганы капли чернил. Если на этом листе нарисовать (косоугольную) систему координат с произвольным началом, осями, параллельными любым двум сторонам листа, и масштабом 1 см вдоль обеих осей, то хотя бы одна точка с целыми координатами обязательно окажется окрашенной чернилами. Какое наименьшее целое число квадратных миллиметров может составлять общая площадь всех клякс? (Можно считать, что каждая клякса — многоугольник или круг, а всех клякс — конечное число.)
(Присланная задача изменена администрацией)
Задачу решили:
30
всего попыток:
159
У Вас есть 10 одинаковых стеклянных шариков. Вы бросаете их — можно по одному — с разных этажей 1015-этажного небоскрёба, чтобы выяснить, на каком этаже они начинают разбиваться от падения. (Например, на пятом уже разбиваются, а на четвёртом еще нет.) Разрешается сделать не более n бросков и разбить все 10 шариков. Найдите минимальное значение n, при котором ещё возможно гарантированно определить, при броске с какого именно этажа шарики начинают разбиваться. Учтите, что шарик может разбиться и на первом этаже, а может не разбиться и на последнем.
Задачу решили:
64
всего попыток:
99
Числа x, x−5, x+5 — квадраты рациональных чисел. Найдите x.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|