img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 1974
всего попыток: 3279
Задача опубликована: 04.03.09 11:05
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Собака — 3,
лошадь — 5,
свинья — 3,
кошка — 3,
петух — 8,
корова — 2,
утка — ?

Задачу решили: 583
всего попыток: 685
Задача опубликована: 22.07.09 23:38
Прислал: AndreTM img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

188 — 4

232 — 0

100 — 2

163 — 1

386 — ?

Задачу решили: 131
всего попыток: 182
Задача опубликована: 06.08.09 00:53
Прислала: Hasmik33 img
Вес: 1
сложность: 2 img
баллы: 100

Продолжите последовательность: Т464, Г6128, О8126, Д123020, ?

(Задача предложена Б.Бурдой во время "Колорадского конкурса".)
Задачу решили: 207
всего попыток: 370
Задача опубликована: 26.10.09 10:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: pete

Отец с хитрой улыбкой спрашивает своего сына: "Какое число самое большое?" Получив ответ, он лишь удивлённо качает головой — возразить нечего! Что ответил сын? 

Задачу решили: 62
всего попыток: 267
Задача опубликована: 19.11.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Команда IF A=B HANG 1 на языке программирования MUMPS означает: "если A=B, то выполнить задержку программы на 1 секунду". В языке MUMPS почти нет понятия ТИПА ДАННЫХ (текстовые, целые числа, плавающая точка, короткие, длинные, логические и т.п.). Можно смело смешивать все данные, и всё будет выполняться по какой-то "естественной" логике каждой конкретной операции. Например, выражение 123 можно одновременно рассматривать и как число, и как строку. Кроме того, почти каждую команду можно писать не полностью, а только её начальные буквы. Например, вместо команды HANG можно писать HAN, или HA или только одну букву H. Длина написанной выше команды — 13 символов. Напишите эту же команду прописными латинскими буквами в кратчайшем виде.

Задачу решили: 15
всего попыток: 58
Задача опубликована: 09.09.19 08:00
Прислал: TALMON img
Источник: Вписанные звёзды Н.Авилова (Задача 1878)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке.

Вписанные звезды

Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100?

Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.

Задачу решили: 6
всего попыток: 21
Задача опубликована: 13.09.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 2533 и 1680
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?

Задачу решили: 9
всего попыток: 16
Задача опубликована: 20.10.23 08:00
Прислал: Sam777e img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В правильном шестиугольнике со стороной 3 нарисовали сетку из единичных равносторонних треугольников (смотри рисунок).

Художник время от времени подходит к рисунку с шестиугольником, окунает кисть в банку с краской и закрашивает по линиям сетки весь контур одного равностороннего треугольника любого размера. При этом контур очередного закрашиваемого треугольника может проходить по каким-то ранее закрашенным местам.

За какое минимальное количество подходов художник может закрасить всю сетку (включая границу шестиугольника)?

На рисунке изображён пример частичного закрашивания сетки после 4-х подходов (исключительно для красоты художник использовал разные цвета).

Живописцы, окуните ваши кисти

В качестве решения необходимо предъявить доказательство минимальности того количества подходов, которое вы нашли.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.