Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
86
всего попыток:
151
Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.
Задачу решили:
59
всего попыток:
154
Какое наибольшее число точек можно выбрать на отрезке [0;1] так, чтобы на любом отрезке [a;b], который является частью отрезка [0;1], было не больше 1+100(b–a)2 точек?
Задачу решили:
129
всего попыток:
209
Найдите наименьшее значение выражения при .
Задачу решили:
104
всего попыток:
232
Сколько решений в целых (необязательно положительных) числах имеет уравнение xy/(x+y)=2011?
Задачу решили:
60
всего попыток:
120
Числа s, t, u, v удовлетворяют условию: . Найти .
Задачу решили:
64
всего попыток:
209
Каждую грань куба разбили на 16 равных квадратиков, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.
Задачу решили:
48
всего попыток:
206
Вычислите минимум функции , где — такие неотрицательные действительные числа, что , а . В ответе укажите значение , округлённое до ближайшего целого.
Задачу решили:
83
всего попыток:
126
Сколько различных действительных решений имеет уравнение: ? (Как обычно, — это целая часть числа x, а — его дробная часть.)
Задачу решили:
78
всего попыток:
183
Найдите все натуральные (целые положительные) решения уравнения . В ответе укажите сумму всех возможных значений .
Задачу решили:
69
всего попыток:
191
На листке написано несколько различных действительных чисел. Среди любых трёх из них обязательно найдутся два, сумма которых тоже написана на листке. Какое наибольшее количество чисел может быть на листке?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|