Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
79
всего попыток:
210
Положительные числа a и b таковы, что система из двух уравнений x2+y2+z2=a, |x|+|y|+|z|=b имеет ровно n решений. (Число n — натуральное.) Найдите сумму всех возможных значений n.
Задачу решили:
109
всего попыток:
136
Может ли число n4+4 быть простым, если n — целое и n>1?
Задачу решили:
107
всего попыток:
144
Какое наибольшее число сторон выпуклого многоугольника могут быть равны его самой длинной диагонали?
Задачу решили:
58
всего попыток:
79
На ледяном поле лежат три шайбы. Хоккеисту разрешается бросить любую из шайб так, чтобы она пролетела между двумя другими. Могут ли шайбы оказаться на своих первоначальных местах после 111 бросков хоккеиста? (После броска шайба летит по прямой. И до, и после броска шайбы лежат в вершинах треугольника.)
Задачу решили:
33
всего попыток:
430
Припишем каждой букве русского языка свой номер: А–1, Б–2, ..., Я–33 (включаем все: Ё, Й, Ъ, и т.д.). Попытаемся разместить на плоскости несчётное множество букв А, несчётное множество букв Б, и так до буквы Я. Одинаковые буквы могут быть разного размера, но не могут иметь общих точек. Укажите сумму номеров букв, для которых это можно сделать.
Задачу решили:
170
всего попыток:
208
В треугольник вписана окружность радиуса 12. Чему равен минимальный радиус описанной окружности?
Задачу решили:
165
всего попыток:
428
Какое наименьшее число точек нужно стереть с рисунка так, чтобы нельзя было нарисовать ни одного квадрата с вершинами в оставшихся точках?
Задачу решили:
91
всего попыток:
240
На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?
Задачу решили:
55
всего попыток:
164
Расстояния между тремя парами скрещивающихся рёбер треугольной пирамиды равны 4, 5 и 6 соответственно. Найдите наименьший объём пирамиды.
Задачу решили:
66
всего попыток:
72
Можно ли представить произвольное натуральное число в виде выражения, содержащего лишь три двойки и произвольные математические знаки? Т.е. допускается сколько угодно складывать, вычитать, менять знак, умножать, делить, возводить в степень, извлекать корни, логарифмировать, вычислять синусы и арксинусы, косинусы и арккосинусы, тангенсы и арктангенсы, но все числа в выражении должны быть записаны в десятичной записи с помощью лишь трёх двоек.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|