Лента событий:  
sternfeb решил задачу "2018 кротов" (Математика):
            
               
              
              
              
                       
               
           
           
 
                   Пожалуйста, не пишите нам, что вы не можете решить задачу.  
                
                    Если вы не можете ее решить, значит вы не можете ее решить :-) 
                Задачу решили:
                
                    29 
                
             
            
                всего попыток:
                
                    192 
                
             
            
                            
        
 
 Из целого числа A вычли число B, полученное перестановкой цифр A. A-B состоит из 2013 единиц. Все эти числа (A, B, A-B, 2013) даны в n-ичной системе счисления. Введите (в 10-ичной системе счисления) сумму всех возможных значений n.  
                
            
            
                Задачу решили:
                
                    52 
                
             
            
                всего попыток:
                
                    72 
                
             
            
                            
        
 
 В натуральном числе W все N цифр различны и расположены в порядке убывания. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1419. Найти все такие числа W и ввести их сумму.  
                
            
            
                Задачу решили:
                
                    71 
                
             
            
                всего попыток:
                
                    105 
                
             
            
                            
        
 
 Числовой ребус ОСЕНЬ - ЗИМА = ВЕСНА (как обычно, разные буквы обозначают разные цифры) имеет много решений, поэтому будем рассматривать только те из них, в которых Ь=0 (мягкий знак обозначает нуль). Найдите максимальное значение слова ВЕСНА.  
                
            
            
                Задачу решили:
                
                    45 
                
             
            
                всего попыток:
                
                    166 
                
             
            
                            
        
 
 В натуральном числе W все N цифр различны. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1353. Определить все возможные значения N, для которых такие числа существуют, и ввести их сумму.  
                
            
            
                Задачу решили:
                
                    41 
                
             
            
                всего попыток:
                
                    113 
                
             
            
                            
        Доска 16х16 разделена на квадраты со стороной длины 1. Сколько существует различных отрезков целочисленной длины с концами в узлах доски? (Поворачивать доску нельзя, т.е. для доски 1х1 ответ - 4.)  
                
            
            
                Задачу решили:
                
                    70 
                
             
            
                всего попыток:
                
                    122 
                
             
            
                            
        120 школьников выстроили друг за другом. Никакие две девочки не стоят ни дружка за дружкой, ни через семь человек. Найти максимальное количество девочек.  
                
            
            
                Задачу решили:
                
                    27 
                
             
            
                всего попыток:
                
                    144 
                
             
            
                            
        
 
 Найти максимальное натуральное N такое, что N! можно представить в виде суммы более чем 9-ти последовательных натуральных чисел не более, чем 666-ю способами.  
                
            
            
                Задачу решили:
                
                    38 
                
             
            
                всего попыток:
                
                    51 
                
             
            
                            
        Вася кодирует стихи, заменяя все буквы русского алфавита различными числами от 1 до 33, и посылает Маше ссылку на текст и наборы чисел, являющиеся суммами кодов букв в словах. Так, взяв Пушкина, он закодировал Мой дядя самых честных правил 11 8 131 134 165 Когда не в шутку занемог 46 18 27 52 84 Закодируйте васиным кодом слова КРИМПЛЕН, ШТУЧКА, ЗАВОД, ЙОГ. В ответе введите произведение полученных чисел.  
                
            
            
                Задачу решили:
                
                    49 
                
             
            
                всего попыток:
                
                    61 
                
             
            
                            
        
 
 Все 80 натуральных делителей натурального числа n расположили в порядке возрастания. Оказалось, что делители с первого по четвертый образуют геометрическую прогрессию, делители с четвертого по седьмой - арифметическую прогрессию, а восьмой делитель меньше 200. Найти n.  
                
            
            
                Задачу решили:
                
                    56 
                
             
            
                всего попыток:
                
                    74 
                
             
            
                            
        
 
 Сумма номеров домов, которые стоят по одну сторону одного городского квартала, равна 135, по одну сторону другого квартала – 235, причем некоторые дома этих кварталов имеют одинаковые номера. Укажите эти номера. В ответ запишите произведение найденных чисел. 
               Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
            
           
           
           
           
           
 |