Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
87
всего попыток:
127
В последовательности {a0, a1, a2,...} a3=91 и при n≥0 an+1=10an+(–1)n. Сколько элементов этой последовательности являются квадратами целых чисел?
Задачу решили:
36
всего попыток:
193
Три окружности, радиусы которых равны 418, 2090 и 3135, касаются друг друга в трёх различных точках. Радиус четвёртой окружности, касающейся всех первых трёх окружностей, равен R. Чему равна сумма всевозможных значений R?
Задачу решили:
109
всего попыток:
131
В какое наибольшее число раз сумма цифр натурального числа n может превышать сумму цифр числа 8n?
Задачу решили:
70
всего попыток:
200
Найдите максимальное натуральное число N такое, что число N! представимо в виде произведения N−3 последовательных натуральных чисел.
Задачу решили:
81
всего попыток:
121
Сколько существует натуральных чисел, кубы которых не представимы в виде разности квадратов двух целых чисел?
Задачу решили:
91
всего попыток:
170
Внутри квадрата ABCD отмечена такая точка K, что углы KAC и KCD равны 19°. Сколько градусов составляет угол ABK?
Задачу решили:
83
всего попыток:
104
Пусть I — точка пересечения биссектрис прямоугольного треугольника ABC. Обозначим через K, L и M точки, симметричные точке I относительно сторон треугольника ABC. Окружность, описанная около треугольника KLM, проходит через вершину B. Сколько градусов составляет угол ABC?
Задачу решили:
79
всего попыток:
168
Какое наибольшее количество элементов может содержать множество различных натуральных чисел, не превосходящих 16 и среди которых нет тройки попарно взаимно простых чисел?
Задачу решили:
75
всего попыток:
127
Пусть A(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 3, а B(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 5 или на 7 (можно и на 5, и на 7 сразу, но каждое такое число учитывается только один раз). Например, A(10)=3 и B(40)=12. Найдите наибольшее n, для которого A(n)=B(n).
Задачу решили:
65
всего попыток:
99
Соревнование, в котором принимали участие n>1 игроков длилось k дней. Каждый день каждый игрок получал от 1 до n очков, причём все результаты были различны. По окончании соревнования оказалось, что все игроки получили по 26 очков. Найдите все пары (n,k) для которых такое возможно. В ответе укажите количество этих пар.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|