img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 13
всего попыток: 21
Задача опубликована: 14.05.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg, игрыimg
Лучшее решение: Vkorsukov

На левом чертеже содержится большое количество различных n-угольников для различных n. На правом чертеже показан пример одного n-угольника для n=10.

n-многоугольник

Найдите максимально возможное n.

Ответ необходимо обосновать: показать, что многоугольник с найденным вами количеством сторон n существует, и доказать, что это n является максимальным.

Задачу решили: 27
всего попыток: 36
Задача опубликована: 02.06.21 08:00
Прислал: avilow img
Источник: По мотивам задачи Домашенко А.М.
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В равнобедренном треугольнике ABC с основанием AC=10, высотой BD=10 вписаны квадраты KLMN и DPRQ. Если треугольник ABC перегнуть по высоте BD, то треугольники ABD и BDC совпадут при наложении, а квадраты частично перекроются.

Два квадрата в треугольнике - 2

Найдите площадь общей части квадратов KLMN и DPRQ в этом случае.

Задачу решили: 24
всего попыток: 32
Задача опубликована: 23.06.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дана ломаная M0M1M2M3M4M5M6M7. Все углы M0M1M2, M1M2M3, ..., M5M6M7 равны. Их величина такая, что, если бы все звенья были одинаковой длины, то ломаная была бы замкнута, образуя правильный семиугольник. Однако, длины звеньев другие:

|M0M1| = 5
|M1M2| = 8
|M2M3| = 11
|M3M4| = 14
|M4M5| = 17
|M5M6| = 20
|M6M7| = 23

Угол кончика запятой

Соединив отрезком крайние точки M7 и M0, получим восьмиугольник. Найдите размер его наименьшего угла в градусах.

Задачу решили: 23
всего попыток: 40
Задача опубликована: 20.09.21 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Костя выписал в строчку без пробелов все натуральные числа от 1 до N, а потом вычеркнул из строчки N одинаковых цифр. При каком наименьшем N>1 это могло случиться?

Задачу решили: 38
всего попыток: 53
Задача опубликована: 29.09.21 08:00
Прислал: admin img
Источник: https://archimedes-lab.org/
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

3 фонарика

Найти угол α в градусах.

Задачу решили: 11
всего попыток: 94
Задача опубликована: 20.10.21 08:00
Прислал: user033 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Дан выпуклый четырехугольник ABCD, в котором проведены диагонали, пересекающиеся в точке K. При этом длины всех восьми полученных отрезков AB, BC, CD, AD, AK, BK, CK, DK это различные целые числа. Найдите сумму длин этих отрезков для четырехугольника с наименьшей площадью.

Задачу решили: 28
всего попыток: 61
Задача опубликована: 17.12.21 08:00
Прислал: solomon img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Треугольник со сторонами арифметической прогрессии 6, 10, 14 заключен между описанной и вписанной окружностями. Найти сумму квадратов расстояний от точек касания вписанной окружности со сторонами треугольника до центра описанной окружности. 

Задачу решили: 30
всего попыток: 45
Задача опубликована: 20.12.21 08:00
Прислал: admin img
Источник: В. И. Арнольд, "Задачи для детей от 5 до 15 л...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)

Задачу решили: 39
всего попыток: 43
Задача опубликована: 12.01.22 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Дан эллипс с полуосями 5 и 12. Найти расстояние от центра эллипса до центра окружности, касающейся (внешним образом) эллипса и двух его параллельных касательных.

Эллипс и окружность

Задачу решили: 23
всего попыток: 32
Задача опубликована: 18.03.22 08:00
Прислал: TALMON img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На рисунке изображена 11-конечная звезда с концами в 11-и точках, определяющих на параболе y=x² десять дуг одинаковой длины, от точки (-2, 4) до точки (2, 4).

11-конечная звезда на параболе

Чему равна сумма углов концов звезды (в градусах)?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.