Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
38
Шесть химиков синтезировали 6 новых химических веществ - у каждого есть ровно 1 грамм своего нового вещества. Когда два химика встречаются, они складывают запасы всех имеющихся у них в этот момент веществ, делят их поровну и забирают себе по половине. После 8 таких встреч оказалось, что у каждого из химиков есть не менее чем x грамм каждого вещества. Найдите наибольшее возможное значение x.
Задачу решили:
22
всего попыток:
43
В правильном десятиугольнике ABCD...J со стороной 4000 точка К является пересечением диагоналей АD и BG. Стороны, содержащие вершину А, продлеваются двумя лучами - за вершины В и J. Пусть m и M обозначают нижнюю и верхнюю грани расстояний от вершины А до прямых, проходящих через точку К и не проходящих через вершину А, и пересекающих оба луча. Найдите целую часть m·M.
Задачу решили:
46
всего попыток:
52
Определите площадь прямоугольника с учетом известных площадей частей.
Задачу решили:
45
всего попыток:
66
Отрезок, соединящий вершину треугольника с точкой, делящий противоположную точку в отношении 1:2, назовем тридианой. В треугольнике проведены все тридианы. Найдите отношение площади треугольника к площади шестиугольника, ограниченного тридианами.
Задачу решили:
57
всего попыток:
70
Найдите величину угла x в градусах.
Задачу решили:
38
всего попыток:
61
Луч света вышел из одного угла и, отразившись 6 раз от зеркальных сторон, попал в другой угол. Определите расстояние, которое он прошел. (Ответ введите округлив с точностью до двух знаков после десятичной запятой.)
Задачу решили:
25
всего попыток:
64
На плоскости проведены три прямые, не пересекающиеся в одной точке. Известно, что радиусы всех окружностей, касающиеся всех трёх прямых - целые числа. Радиусы двух из этих окружностей равны 4 и 22. Найдите сумму радиусов всех остальных окружностей, касающихся тех же трёх прямых.
Задачу решили:
25
всего попыток:
49
Площади квадратов BKLM и ABCD соответственно равны 2 и 25. Угол CBK тупой. Точки A, D, L, M лежат на окружности, точка B общая. Найдите тангенс угла ABK.
Задачу решили:
34
всего попыток:
50
Внутри окружности расположены 2 квадрата площадью 8 и 3. Точки Т, М, Д, Е лежат на окружности, точка А – общая у квадратов (см. рисунок). Чему равен минимальный целочисленный радиус круга, в который можно поместить этот рисунок?
Задачу решили:
35
всего попыток:
73
Полукруг разбит линиями на три части одинаковой площади. Найдите угол α в градусах. Ответ округлите до ближайшего целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|