img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 72
всего попыток: 165
Задача опубликована: 23.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

BC — основание равнобедренного треугольника ABC, BD — биссектриса угла B. Выполнено равенство BC = AD+BD. Найдите угол A (в градусах).

Задачу решили: 36
всего попыток: 94
Задача опубликована: 25.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Рассмотрим множество квадратов для первых 40 натуральных чисел:

S={12,22,32,42,..., 392,402}.

Для каждого из чисел 1<n<41, рассмотрим все подмножества S, которые состоят ровно из n элементов. Если при фиксированном n, в каждом из подмножеств длины n найдутся хотя бы два элемента x и y такие, что x+y =p простое число, будем называть число n - квадратнопростым. Найдите минимальное квадратнопростое число n для данного множества S.

(Например для множества S={1, 4, 9}, n=2: {1, 4}, {1, 9}, {4, 9}; n=3: {1, 4, 9}, и минимальное квадратнопростое число n=3).

Задачу решили: 32
всего попыток: 250
Задача опубликована: 20.02.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?

Задачу решили: 44
всего попыток: 98
Задача опубликована: 25.02.13 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

D, E, F - это точки касания вписанной в треугольник ΔABC окружности с центром в т .O (см.рис.). Найдите площадь треугольника ΔDEF, если известно, что площадь треугольника ΔABC=264, r=6 - радиус вписанной окружности ΔABC, R=65/3 - радиус описанной около ΔABC окружности.

pl02.jpg

Задачу решили: 89
всего попыток: 153
Задача опубликована: 08.03.13 08:00
Прислал: Freeplay img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Меньшая окружность касается большей внутренним образом, а также касается некоторого её радиуса в середине. Найдите отношение радиусов меньшей и большей окружности.

Задачу решили: 58
всего попыток: 78
Задача опубликована: 20.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Диагонали вписанного четырехугольника ABCD пересекаются в точке P. Центры описанных окружностей треугольников APB и CPD лежат на описанной окружности ABCD. Найдите угол между прямыми AC и BD (APD).

Задачу решили: 35
всего попыток: 200
Задача опубликована: 27.03.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В некоторых геометрических построениях с помощью циркуля и линейки можно обойтись одним циркулем или одной линейкой.

Рассмотрим множество всех таких натуральных чисел n>1, которые удовлетворяют следующему условию: с помощью одной линейки можно разделить сторону заданного (уже нарисованного) прямоугольника на n равных частей.

Какие натуральные числа 1<n<22 принадлежат этому множеству? Укажите в ответе их сумму.

Задачу решили: 89
всего попыток: 100
Задача опубликована: 29.03.13 08:00
Прислал: zukk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Для натурального n>3 будем обозначать через n? ( n-вопросиал) произведение всех простых чисел, меньших n. Найдите сумму решений уравнения n?=2n+16.

Задачу решили: 71
всего попыток: 114
Задача опубликована: 17.04.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Несколько (больше одного) человек, каждый из которых вначале имеет 300 долларов, играют в казино. Один раунд игры заключается в следующем. Все игроки отдают по 10 долларов крупье, затем один из них по жребию объявляется проигравшим. Он раздаёт все свои деньги поровну всем остальным и выходит из игры. В итоге оказалось, что у последнего оставшегося игрока капитал вновь составляет 300 долларов. Сколько человек пришло в казино?

Задачу решили: 57
всего попыток: 82
Задача опубликована: 22.05.13 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kurtashew (радослав курташев)

Стороны треугольника 192, 120 и 168. Найдите расстояние от центра описанной окружности до ортоцентра (точка пересечения высот).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.