img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 38
всего попыток: 145
Задача опубликована: 20.12.09 10:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Два различных числа называются похожими, если их десятичные записи совпадают во всех разрядах, кроме одного. Найдите максимальное количество семизначных чисел, среди которых нет двух похожих. 

Задачу решили: 91
всего попыток: 240
Задача опубликована: 22.12.09 22:46
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?

Задачу решили: 52
всего попыток: 77
Задача опубликована: 31.12.09 01:38
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На доске написаны два числа: 0 и 1. На первом шаге напишем между ними их сумму и получим: 0 1 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Таким образом, после второго шага получим: 0 1 1 2 1, после третьего — 0 1 1 2 1 3 2 3 1 и т.д. Найдите сумму всех чисел, написанных после n шагов.

(Пожалуйста, не присылайте файлов!)
Задачу решили: 120
всего попыток: 274
Задача опубликована: 13.01.10 21:24
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

К положительному целому числу x, записанному в десятичной системе исчисления без незначащих нулей впереди, приписали это же число и получили десятичную запись нового числа y — дубля x. (Например, если x=12, то y=1212.) Найдите сумму всех различных целых значений дроби y/x2.

+ 26
  
Задачу решили: 49
всего попыток: 143
Задача опубликована: 16.01.10 15:52
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На квадратном торте лежат n не соприкасающихся друг с другом треугольных шоколадок. Для каких n торт всегда (т.е. при любых размерах и расположении шоколадок) можно разрезать на куски в форме выпуклых многоугольников так, чтобы каждый кусок содержал ровно одну шоколадку? (Шоколадки резать нельзя!) Если Ваш ответ "для всех" — введите 0, в противном случае — наибольшее возможное значение n.

+ 55
  
Задачу решили: 129
всего попыток: 185
Задача опубликована: 19.01.10 10:19
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.

Задачу решили: 137
всего попыток: 191
Задача опубликована: 28.01.10 01:06
Прислал: Father img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Представить сумму 1/(22−1)+1/(42−1)+1/(62−1)+1/(82−1)+...+1/(20102−1) в виде несократимой дроби. В ответе указать сумму числителя и знаменателя.

Задачу решили: 51
всего попыток: 72
Задача опубликована: 31.01.10 23:26
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Можно ли квадрат разрезать на 20 одинаковых прямоугольных треугольников, один катет каждого из которых в два раза длиннее другого?

Задачу решили: 109
всего попыток: 280
Задача опубликована: 20.02.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

На плоскости отмечена 21 точка так, как показано на рисунке. Какое наименьшее число прямых нужно провести, чтобы разделить все отмеченные точки? (Т.е. для любой пары отмеченных точек должна найтись проведённая прямая, не содержащая ни одну из них и проходящая между ними.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.