img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 108
всего попыток: 152
Задача опубликована: 16.12.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

В треугольнике ABC BC = a, CA = b, AB = c. Найдите градусную меру угла B, если a = c и a2 = b2 + ba.

Задачу решили: 60
всего попыток: 150
Задача опубликована: 06.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
разница между числами ai и bj не меньше 3 для любых i ≠ j,
разница между числами любых двух детей одного пола не меньше 2,
b10 наибольшее среди всех чисел.
Найдите, какое наименьшее значение может принимать b10.

Задачу решили: 99
всего попыток: 132
Задача опубликована: 13.02.12 08:00
Прислал: Yhlas img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: gilbert00

Найдите сумму всех простых чисел p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).

Задачу решили: 109
всего попыток: 181
Задача опубликована: 16.03.12 08:00
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

На клетчатой бумаге нарисован прямоугольник 3 на 10 (3 строки и 10 столбцов). Некоторые клетки закрашены. В каждой строке и в каждом столбце есть хотя бы одна закрашенная клетка. Строки содержат 4, 5 и 6 закрашенных клеток. Найти максимальное число закрашенных столбцов (столбец называется закрашенным, если все его клетки закрашены).

Задачу решили: 97
всего попыток: 131
Задача опубликована: 25.05.12 08:00
Прислал: katalama img
Источник: М. Гарднер
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Между зданиями стоят две лестницы. Длина первой - 119, второй - 70.  

katalama-02.jpg

Найдите расстояние между зданиями если лестницы перекрещиваются на высоте 30.

+ 23
  
Задачу решили: 107
всего попыток: 193
Задача опубликована: 02.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

В школе, где учится больше 225, но меньше 245 учеников, часть учеников являются отличниками, а остальные хорошистами. После контрольной работы 2/7 отличников стали хорошистами, а хорошисты так и остались хорошистами за исключением одного человека, который  стал троечником. При этом хорошистов и отличников стало поровну. Сколько учеников могло быть в школе?

Задачу решили: 79
всего попыток: 88
Задача опубликована: 21.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Angelina

Отрезки АС и ВD пересекаются в точке М, причем АВ = СD и угол АСD - прямой. Найдите минимальное значение отношения MD/MA.

+ 17
  
Задачу решили: 88
всего попыток: 174
Задача опубликована: 03.12.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В Бразилии живет много-много диких обезьян. Каждый год 2 января всех обезьян пересчитывают. В 1999 году количество обезьян увеличилось по сравнению с 1998 года ровно на 5%. И в 2000-2003 годах прирост поголовья обезьян каждый год тоже составлял ровно 5%, причем, по данным переписи 2003 года, в стране проживало не более 5000000 диких обезьян. Сколько диких обезьян жило в Бразилии 2 января 2003 года?

Задачу решили: 40
всего попыток: 71
Задача опубликована: 03.04.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Найдите наибольшее натуральное k, удовлетворяющее следующему условию: если в 2013 мешках разложены гири, вес каждой гири – степень двойки и суммарный вес гирь в каждом мешке один и тот же, то найдутся k гирь одного веса.

Задачу решили: 29
всего попыток: 192
Задача опубликована: 03.05.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Из целого числа A вычли число B, полученное перестановкой цифр A. A-B состоит из 2013 единиц. Все эти числа (A, B, A-B, 2013) даны в n-ичной системе счисления. Введите (в 10-ичной системе счисления) сумму всех возможных значений n.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.