img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 174
всего попыток: 252
Задача опубликована: 08.07.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Шла торговка на рынок продавать пирожки. По дороге она проголодалась и съела сначала пирожок и половину остатка, затем ещё пирожок и пол-остатка, затем ещё пирожок и пол-остатка. А затем по дороге воры украли 7 пирожков и пол-остатка. На рынок торговка принесла 1 пирожок. Сколько пирожков было?

Задачу решили: 82
всего попыток: 206
Задача опубликована: 22.07.11 08:00
Прислал: demiurgos img
Источник: по мотивам задачи, присланной Ulkas
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Сколько понадобится четвёрок, чтобы записать в десятичной системе счисления все натуральные числа от 1 до 1111111111? (Последнее число состоит из 10 единиц.)

Задачу решили: 87
всего попыток: 123
Задача опубликована: 22.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Десятизначное число составлено следующим образом: первая цифра равна количеству единиц в этом числе, вторая цифра — количеству двоек и т.д., десятая цифра — количеству нулей. Найдите сумму всех таких чисел.

Задачу решили: 33
всего попыток: 76
Задача опубликована: 31.08.11 08:00
Прислал: Sam777e img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Ученику задали напечатать на пишущей машинке подряд первые 2011 натуральных чисел — каждое следующее число на новой строке. Но у пишущей машинки оказалась сломана клавиша с символом 2; и ученик решил пропускать все числа, в записи которых требуется эта клавиша, но напечатать 2011 чисел. Однако он был трудоголиком, вошёл во вкус дела и напечатал 2011·1020 чисел. Какое число было напечатано на последней строке?

Задачу решили: 86
всего попыток: 111
Задача опубликована: 19.10.11 08:00
Прислал: demiurgos img
Источник: А.В.Спивак, Математический кружок
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

В клетках шахматной доски 8×8 расставлены n фишек так, что любой квадрат 3×3 содержит в точности одну фишку. Найдите произведение наибольшего и наименьшего значений n.

Задачу решили: 112
всего попыток: 309
Задача опубликована: 24.10.11 08:00
Прислал: demiurgos img
Источник: А.В.Спивак "Математический кружок"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Какое наибольшее число сторон может быть у многоугольника, являющегося пересечением треугольника и четырёхугольника?

Задачу решили: 108
всего попыток: 152
Задача опубликована: 16.12.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

В треугольнике ABC BC = a, CA = b, AB = c. Найдите градусную меру угла B, если a = c и a2 = b2 + ba.

Задачу решили: 60
всего попыток: 150
Задача опубликована: 06.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
разница между числами ai и bj не меньше 3 для любых i ≠ j,
разница между числами любых двух детей одного пола не меньше 2,
b10 наибольшее среди всех чисел.
Найдите, какое наименьшее значение может принимать b10.

Задачу решили: 99
всего попыток: 132
Задача опубликована: 13.02.12 08:00
Прислал: Yhlas img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: gilbert00

Найдите сумму всех простых чисел p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).

Задачу решили: 109
всего попыток: 181
Задача опубликована: 16.03.12 08:00
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

На клетчатой бумаге нарисован прямоугольник 3 на 10 (3 строки и 10 столбцов). Некоторые клетки закрашены. В каждой строке и в каждом столбце есть хотя бы одна закрашенная клетка. Строки содержат 4, 5 и 6 закрашенных клеток. Найти максимальное число закрашенных столбцов (столбец называется закрашенным, если все его клетки закрашены).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.