Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
65
всего попыток:
99
Соревнование, в котором принимали участие n>1 игроков длилось k дней. Каждый день каждый игрок получал от 1 до n очков, причём все результаты были различны. По окончании соревнования оказалось, что все игроки получили по 26 очков. Найдите все пары (n,k) для которых такое возможно. В ответе укажите количество этих пар.
Задачу решили:
48
всего попыток:
206
Вычислите минимум функции , где — такие неотрицательные действительные числа, что , а . В ответе укажите значение , округлённое до ближайшего целого.
Задачу решили:
83
всего попыток:
126
Сколько различных действительных решений имеет уравнение: ? (Как обычно, — это целая часть числа x, а — его дробная часть.)
Задачу решили:
133
всего попыток:
250
Найдите (не пользуясь компьютером!) остаток от деления числа 9876543211234567689 на 7.
Задачу решили:
78
всего попыток:
183
Найдите все натуральные (целые положительные) решения уравнения . В ответе укажите сумму всех возможных значений .
Задачу решили:
77
всего попыток:
186
В оранжерее на космической станции в виде прямоугольника 12×15 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 180-ти бабочек перелетела на соседний по диагонали цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.
Задачу решили:
96
всего попыток:
150
Одна биссектриса равнобедренного тупоугольного треугольника в два раза длиннее другой. Сколько градусов составляет его тупой угол?
Задачу решили:
69
всего попыток:
191
На листке написано несколько различных действительных чисел. Среди любых трёх из них обязательно найдутся два, сумма которых тоже написана на листке. Какое наибольшее количество чисел может быть на листке?
Задачу решили:
56
всего попыток:
183
В настольной игре 20 фишек первоначально расположены в различных вершинах некоторого (необязательно правильного!) выпуклого 24-угольника. За один ход можно передвинуть любое число фишек в одном и том же направлении на одно и то же расстояние. Через какое наименьшее число ходов все фишки могут оказаться на одной прямой?
Задачу решили:
99
всего попыток:
172
Имеется число из 11 цифр, среди которых нет нулей. Все его цифры переписали в обратном порядке и получившееся число вычли из исходного. Найдите наименьшее положительное число, которое могло получиться в результате.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|