Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
70
всего попыток:
103
На плоскости проведены n прямых. Каждая пересекает ровно 2011 других. Найдите все возможные значения n. В ответе укажите сумму всех значений.
Задачу решили:
63
всего попыток:
172
Даны две параллельные прямые, расстояние между которыми — целое число. На одной прямой находится точка A, а на другой — точки B, C, D, E (именно в таком порядке). Расстояние между любыми двумя из этих пяти точек — натуральное число, BC=4. Найдите наименьшее расстояние между A и E.
Задачу решили:
36
всего попыток:
193
Три окружности, радиусы которых равны 418, 2090 и 3135, касаются друг друга в трёх различных точках. Радиус четвёртой окружности, касающейся всех первых трёх окружностей, равен R. Чему равна сумма всевозможных значений R?
Задачу решили:
98
всего попыток:
155
Взяли 100 чисел. Среди их всевозможных произведений по два числа оказались ровно 1000 отрицательных. Сколько среди исходных чисел было нулей? В ответе укажите произведение всех возможных значений количества нулей.
Задачу решили:
65
всего попыток:
136
Сколькими способами можно расставить 38 попугаев в шеренгу так, чтобы каждый попугай стоял либо на своём месте, либо на соседнем (например, десятый попугай может стоять либо на десятом, либо на девятом, либо на одиннадцатом месте)?
Задачу решили:
91
всего попыток:
170
Внутри квадрата ABCD отмечена такая точка K, что углы KAC и KCD равны 19°. Сколько градусов составляет угол ABK?
Задачу решили:
83
всего попыток:
104
Пусть I — точка пересечения биссектрис прямоугольного треугольника ABC. Обозначим через K, L и M точки, симметричные точке I относительно сторон треугольника ABC. Окружность, описанная около треугольника KLM, проходит через вершину B. Сколько градусов составляет угол ABC?
Задачу решили:
64
всего попыток:
182
Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар.
Задачу решили:
26
всего попыток:
31
Сколькими способами можно записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1?
Задачу решили:
77
всего попыток:
186
В оранжерее на космической станции в виде прямоугольника 12×15 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 180-ти бабочек перелетела на соседний по диагонали цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|