img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 22
всего попыток: 81
Задача опубликована: 03.07.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kondor1969 (Руслан Бакиров)

Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.

Задачу решили: 17
всего попыток: 75
Задача опубликована: 11.09.20 08:00
Прислал: DOMASH img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В правильном целочисленном треугольнике АВС есть такая точка внутри, что целочисленные расстояния a, b, c до его вершин образуют арифметическую прогрессию и НОД(a,b,c) =1. Найти сторону третьего по величине такого треугольника.

Задачу решили: 30
всего попыток: 34
Задача опубликована: 12.03.21 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На стороне AC треугольника ABC выбрана точка D так, что |AB|=|BD|+|CD|. угол CDB равен 100°, угол DCB равен 65°. Найти угол BAC в градусах.

Задачу решили: 28
всего попыток: 87
Задача опубликована: 17.03.21 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Точка D находится внутри треугольника ABC на биссектрисе угла BAC и такова, что угол ADB равен 150°, а угол DCB - 30°. Найдите разность углов CBD и ACD в градусах.

Задачу решили: 27
всего попыток: 36
Задача опубликована: 02.06.21 08:00
Прислал: avilow img
Источник: По мотивам задачи Домашенко А.М.
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В равнобедренном треугольнике ABC с основанием AC=10, высотой BD=10 вписаны квадраты KLMN и DPRQ. Если треугольник ABC перегнуть по высоте BD, то треугольники ABD и BDC совпадут при наложении, а квадраты частично перекроются.

Два квадрата в треугольнике - 2

Найдите площадь общей части квадратов KLMN и DPRQ в этом случае.

Задачу решили: 24
всего попыток: 32
Задача опубликована: 23.06.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дана ломаная M0M1M2M3M4M5M6M7. Все углы M0M1M2, M1M2M3, ..., M5M6M7 равны. Их величина такая, что, если бы все звенья были одинаковой длины, то ломаная была бы замкнута, образуя правильный семиугольник. Однако, длины звеньев другие:

|M0M1| = 5
|M1M2| = 8
|M2M3| = 11
|M3M4| = 14
|M4M5| = 17
|M5M6| = 20
|M6M7| = 23

Угол кончика запятой

Соединив отрезком крайние точки M7 и M0, получим восьмиугольник. Найдите размер его наименьшего угла в градусах.

Задачу решили: 38
всего попыток: 53
Задача опубликована: 29.09.21 08:00
Прислал: admin img
Источник: https://archimedes-lab.org/
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

3 фонарика

Найти угол α в градусах.

Задачу решили: 11
всего попыток: 94
Задача опубликована: 20.10.21 08:00
Прислал: user033 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Дан выпуклый четырехугольник ABCD, в котором проведены диагонали, пересекающиеся в точке K. При этом длины всех восьми полученных отрезков AB, BC, CD, AD, AK, BK, CK, DK это различные целые числа. Найдите сумму длин этих отрезков для четырехугольника с наименьшей площадью.

Задачу решили: 28
всего попыток: 61
Задача опубликована: 17.12.21 08:00
Прислал: solomon img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Треугольник со сторонами арифметической прогрессии 6, 10, 14 заключен между описанной и вписанной окружностями. Найти сумму квадратов расстояний от точек касания вписанной окружности со сторонами треугольника до центра описанной окружности. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.