img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 103
всего попыток: 222
Задача опубликована: 03.05.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.

Задачу решили: 109
всего попыток: 316
Задача опубликована: 05.05.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Две лягушки, большая и маленькая, прыгают по дорожке. Сначала они находятся рядом и первый прыжок совершают одновременно. Затем маленькая лягушка прыгает на 5 см каждую секунду, а большая — на 20 см каждые 3 секунды, но зато после каждого третьего прыжка отдыхает лишние 6 секунд, т.е. два своих следующих прыжка она пропускает. В результате маленькая лягушка то обгоняет большую, то отстаёт от нее. После скольких (своих) прыжков маленькая лягушка опередит большую так, что большая лягушка её больше не нагонит? (Считайте, что все прыжки совершаются почти мгновенно.)

Задачу решили: 93
всего попыток: 174
Задача опубликована: 14.05.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Биссектрисы углов трапеции делят каждое из её оснований на три равные части. Найдите среднюю линию трапеции, если её высота равна . (Трапеция — это четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.)

Задачу решили: 60
всего попыток: 99
Задача опубликована: 21.05.10 08:00
Прислал: andervish img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Про 4 действительных числа a1, a2, b1 и b2 известно, что (a1+b1)/(1+a1b1)=2005, (a2+b1)/(1+a2b1)=4015 и (a1+b2)/(1+a1b2)=1337. Найдите максимальное значение выражения (a2+b2)/(1+a2b2).

Задачу решили: 100
всего попыток: 389
Задача опубликована: 28.06.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish (Андрей Вишневый)

Сколько решений в натуральных числах имеет уравнение 1/x+1/y=1/2010?

Задачу решили: 163
всего попыток: 284
Задача опубликована: 19.07.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)

Задачу решили: 90
всего попыток: 436
Задача опубликована: 23.07.10 08:00
Прислала: Marishka24 img
Источник: "Квант"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 79
всего попыток: 153
Задача опубликована: 26.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наибольшее количество простых чисел подряд найдётся среди значений выражения n213n+47, если n пробегает все целые числа от −20102010 до 20102010?

Задачу решили: 68
всего попыток: 156
Задача опубликована: 28.07.10 08:00
Прислала: Marishka24 img
Источник: Межвузовская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите такое наименьшее натуральное число n, чтобы в любом множестве из n натуральных чисел, не превосходящих 2010, можно было выбрать два числа, одно из которых делится на другое.

Задачу решили: 46
всего попыток: 57
Задача опубликована: 06.08.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Существуют ли такие натуральные числа x и y, что все дроби x/y, (x+1)/y, x/(y+1) и (x+1)/(y+1) являются сократимыми?

(Как всегда, односложные ответы не принимаются. Пожалуйста, не присылайте файлов.)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.