Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
124
всего попыток:
259
Три миссионера и три аборигена хотят переправиться через реку на лодке, которая вмещает только двоих. Если миссионеры окажутся в меньшинстве на берегу или рядом с берегом, то аборигены их сразу съедят. За какое наименьшее число рейсов все они смогут безопасно переправиться на другой берег? (Рейсы нужно считать все: туда и обратно — это два рейса.)
Задачу решили:
109
всего попыток:
210
В самолёте летели пионеры. Среди них были (хотя бы в количестве одного) пятиклассники, шестиклассники и семиклассники (других не было). Если выбрать любых 100 пионеров, среди них обязательно окажутся пятиклассник и шестиклассник. Какое наибольшее количество пионеров могло лететь в самолёте?
Задачу решили:
60
всего попыток:
97
Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.
Задачу решили:
122
всего попыток:
257
В ряду 10 монет. Сначала подряд лежат несколько (от 1 до 9) настоящих, которые весят по 10 граммов, а все следующие за ними — фальшивые, весящие по 9 граммов. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить, какие монеты — настоящие, а какие — фальшивые?
Задачу решили:
62
всего попыток:
251
Имеется предмет, о котором известно, что его вес составляет целое число кг от 1 до 27. Также есть чашечные весы, на обе чашки которых можно класть гири. Определите наименьшее количество гирь, с помощью которых можно определить вес предмета.
Задачу решили:
64
всего попыток:
156
Перед двумя игроками кучка из 1000 спичек. В начале игры первый игрок берёт из неё любое количество спичек от 1 до 999, а затем каждый из игроков по очереди берёт любое число оставшихся спичек, но не больше, чем перед этим взял другой игрок. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Какое наименьшее количество спичек должен взять в начале игры первый игрок, чтобы обеспечить себе победу при любых ходах второго игрока?
Задачу решили:
40
всего попыток:
71
Найдите наибольшее натуральное k, удовлетворяющее следующему условию: если в 2013 мешках разложены гири, вес каждой гири – степень двойки и суммарный вес гирь в каждом мешке один и тот же, то найдутся k гирь одного веса.
Задачу решили:
97
всего попыток:
127
Когда в конце года учитель подводил результаты, то заметил что только 10 учеников получили в течение года хотя бы одну двойку, 9 учеников получили не менее двух двоек, 8 - не менее трех и т. д., а один ученик получил 10 двоек. Больше 10 двоек никто из учеников не получал. Сколько всего двоек в этом классе получили все ученики?
Задачу решили:
37
всего попыток:
89
Числа от 1 до 20 расположены по кругу так, что минимальная разница между любыми двумя соседними числами максимальна. Найдите эту разницу.
Задачу решили:
23
всего попыток:
48
Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|