Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
16
всего попыток:
368
Вернувшись из своего путешествия на Луну, Незнайка решил написать книгу о своих приключениях. Каждый вечер он читал новую главу из неё своим друзьям и однажды прочитал им следующие невероятные события: "Однажды утром Спрутс бросил меня в огромную пещеру с абсолютно гладкими гранитными стенами, которая представляла собой точный куб размерами 100x100x100 метров. Я стоял на краю небольшой ниши, нижний край которой был ровно в центре вертикальной грани этого куба. Выход на волю (его нижний край) был ровно в центре противоположной от меня грани. Присмотревшись, я увидел канат висящий от выхода до пола. Если бы я как-то спустился на пол пещеры, я легко выбрался бы взобравшись по нему. Однако я был на высоте 50 метров от пола и не мог спрыгнуть. К счастью, у меня был подарок Миги: чудесный моток точно такого же каната. Сколько каната из него ни вытягивай, можно вытянуть еще столько же и так далее. Правда он был немного неудобный, в сечении это был не круг, а квадрат со стороной 2 см. Достаточно толстый, но очень гибкий и скользкий. Как я ни старался, я так и не смог закрепить канат, чтобы спуститься по нему вниз. Исследовав всю небольшую нишу, я нашел ножницы, которыми можно было перерезать канат. Выхода из ситуации не было, однако поразмыслив я все же смог выбраться!" "Враньё от первого до последнего слова!" — засмеялись все находившиеся в комнате коротышки, однако профессор Звёздочкин сказал, что при этих условиях у Незнайки действительно был один способ, чтобы выбраться из пещеры, и Знайка с ним согласился. Какое наименьшее количество метров каната нужно было вытянуть Незнайке из мотка, чтобы выбраться? (Считаем, что размеры Незнайки точечные, любой прыжок на любую высоту вверх или вниз смертелен).
Задачу решили:
111
всего попыток:
171
На доске написаны 13 чисел: 0, 1, 2, ..., 12. Среди них выбирают два каких-то числа a и b, стирают их, а вместо них пишут одно число ab+a+b. Описанную процедуру повторяют 12 раз. Найдите наибольшее число, которое может остаться на доске.
Задачу решили:
56
всего попыток:
130
Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 2°. Найдите сумму абсцисс точек пересечения этих прямых с прямой y = 100 − 2x. Ответ округлите до ближайшего целого.
Задачу решили:
98
всего попыток:
134
x≥0,, y≥0, z≥0, u≥0. 2х+ху+z+yzu=1. Найти max(x2y2z2u).
Задачу решили:
185
всего попыток:
244
Сумма двух вещественных чисел a и b равна 5, при этом значение выражения a+b+a2b+b2a равно 24. Найти сумму кубов чисел a и b.
Задачу решили:
186
всего попыток:
212
Решите уравнение 8x(3x+1)=4
Задачу решили:
146
всего попыток:
176
Найти наибольшее число R, при котором система уравнений: x-4y=1 имеет решение в целых числах x, y.
Задачу решили:
48
всего попыток:
68
Найдите количество действительных решений уравнения f(f(x))=x, где функция f(x)=x3 - 2x2 + 6x - 18.
Задачу решили:
106
всего попыток:
151
Положительные числа a, b удовлетворяют равенству ab(a + b + 1) = 25. Найдите наименьшее значение, которое может принимать выражение (a + b)(b + 1).
Задачу решили:
110
всего попыток:
151
Решите уравнение в натуральных числах: x!+y!+z!=u!. В ответе укажите сумму всех возможных вариантов x+y+z+u.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|