img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 164
всего попыток: 421
Задача опубликована: 18.02.10 08:00
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На какое наименьшее число равных пирамид можно разрезать куб?

Задачу решили: 65
всего попыток: 179
Задача опубликована: 08.04.11 08:00
Прислала: Marishka24 img
Источник: Putnam Competition
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько процентов составляет вероятность того, что среди 5 (случайно выбранных) точек на сфере найдутся 4, лежащие на одной замкнутой полусфере? (Замкнутая полусфера — это полусфера, включающая собственную границу.)

Задачу решили: 89
всего попыток: 331
Задача опубликована: 15.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В трёхмерный космический бой играют в параллелепипеде 5×6×7, состоящем из 210 кубических ячеек. Сколько ячеек пересекает большая диагональ параллелепипеда?

Задачу решили: 21
всего попыток: 129
Задача опубликована: 21.03.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

A - основание 4-угольной пирамиды.

B, C, D, E - её боковые грани.

B и D - две противоположные боковые грани (так же как и C и E). Их углы с основанием A:

α - угол между гранью B и основанием A.

β - угол между гранью D и основанием A.

x - сумма углов α и β, выраженных в градусах.

Какое максимальное целое значение может принимать x?

Задачу решили: 28
всего попыток: 94
Задача опубликована: 26.02.14 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите максимальное количество плоскостей, каждая из которых равноудалена от некоторых четырёх точек из заданных 2014-ти точек пространства, расположенных в общем положении.

Задачу решили: 40
всего попыток: 93
Задача опубликована: 04.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pete

Положительные действительные числа a и b удовлетворяют условию
a2 + b2 = (ab + 1) (a + b - 1).
Обозначим минимум и максимум выражения 2ab/(a + b - 1) за m и M. Найдите m2 + M2.

Задачу решили: 25
всего попыток: 304
Задача опубликована: 23.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

При каком наименьшем натуральном n в любом наборе из n действительных чисел больших 10, но меньших 2013 заведомо найдется пара a, b, такая что |(a - b) (ab - 100)| < 10ab?

Задачу решили: 39
всего попыток: 60
Задача опубликована: 05.05.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для положительных действительных чисел a и b выполняется условие
(a2 - a + 1)(b2 - b + 1) = a2b2.
Полагая максимум и минимум выражения 2ab/(a + b - 1) равными M и m, найдите M2 + m2.

Задачу решили: 33
всего попыток: 99
Задача опубликована: 26.05.14 09:53
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Окружность S и лежащая на ней точка P(a,b) обладают следующими свойствами:

(i) Касательная в точке P проходит через начало координат.
(ii) Центр окружности S лежит в четвертой четверти.
(iii) S проходит через точки (1,0) и (9,0).
(iv) b ≥ 9/5.

Для точки P(a,b) обозначим за M и m максимум и минимум выражения

10_formula_Page_3.png

Найдите 36M + 27m2.

Задачу решили: 46
всего попыток: 71
Задача опубликована: 11.06.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Неотрицательные действительные числа a, b, c, d удовлетворяют системе уравнений

a + b - d = -2(c - 3)
a2 + c2 + 2a(c - 3) + bd - 12c = 0

Найдите наибольшее значение, которое может принимать b.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.