Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
63
всего попыток:
85
В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).
Задачу решили:
104
всего попыток:
140
Равнобокая трапеция, описанная около окружности, делится биссектрисой тупого угла на 2 части так, что отношение площадей - целое число. Найдите это число.
Задачу решили:
88
всего попыток:
146
Точка E находится на расстоянии 883·√2 и 37·√2 от вершин А и С квадрата ABCD соответственно, причем угол AEC - прямой, точка Е лежит слева от прямой CD. Найдите расстояние от точки Е до вершины B.
Задачу решили:
56
всего попыток:
171
Два муравья проползли каждый по своему замкнутому маршруту на доске 9 × 9. Каждый полз только по сторонам клеток доски и побывал в каждой из 100 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?
Задачу решили:
56
всего попыток:
130
Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 2°. Найдите сумму абсцисс точек пересечения этих прямых с прямой y = 100 − 2x. Ответ округлите до ближайшего целого.
Задачу решили:
75
всего попыток:
141
Из точки P внутри треугольника ABC на его стороны опущены перпендикуляры PD, PE, PF. Известно, что величина угла A равна 60°, угла B - 30°, длина стороны AB равна 8 см. Найти наибольшее значение, которое может принимать выражение PD2 + PE2 + PF2.
Задачу решили:
67
всего попыток:
209
Среди натуральных чисел n меньших 210 найдите количество таких, что n32 - 1 кратно 210.
Задачу решили:
78
всего попыток:
160
В четырехугольнике ABCD BC является диаметром описанной окружности. Известно, что |AB|2 = 450, |CD|2 = 25 и сумма углов B и C равна 135°. Найдите значение |AD|2.
Задачу решили:
44
всего попыток:
158
Рассмотрим на плоскости все такие треугольники, что координаты двух их вершин задаются целыми положительными числами не больше 10, а третья их вершина - начало координат (0,0). Сколько из них имеют целочисленную площадь?
Задачу решили:
46
всего попыток:
115
Дана окружность, радиус которой равен 36, и центр которой - точка O, и две точки на этой окружности: A и B. Дана точка P. Длины отрезков: |PO| = 54 |PA| = 25 |PB| = 29 Прямая PA пересекает окружность в ещё одной точке A’. Прямая PB пересекает окружность в ещё одной точке B’. Обозначим: C – точка пересечения прямых AB и A’B’, D – точка пересечения прямых AB’ и A’B, M – точка пересечения прямых CD и PO. Чему равна длина отрезка OM?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|