img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 51
Задача опубликована: 25.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В равнобедренном треугольнике ABC |AB|=|AC| и угол BAC равен 20 градусов. Путь D точка на AB такая, что |AD|=|CD|, а E точка на AC такая, что |BC|=|CE|. Найти угол CDE в градусах.

Задачу решили: 38
всего попыток: 42
Задача опубликована: 14.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Найдите сумму 20208+20218+...+20998. В качестве ответа введите число состоящее из последних двух цифр суммы.

Задачу решили: 31
всего попыток: 55
Задача опубликована: 28.12.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В треугольнике с целочисленными сторонами периметр численно равен площади. Найти его наибольшее значение.

Задачу решили: 11
всего попыток: 39
Задача опубликована: 27.01.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите количество решений в целых числах уравнения:
x/(y + z) + y/(z + x) + z/(x + y) = 4
в пределах: 0 ≤ x + y + z ≤ 6000.

Симметричные решения, получаемые одно из другого перестановкой переменных, считать различными.

Задачу решили: 32
всего попыток: 41
Задача опубликована: 12.02.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

В правильном десятиугольнике из одной вершины проведены диагонали, которые разбивают его на восемь треугольников. Известно, что отношение площади десятиугольника к площади некоторых треугольников выражается целым числом. Найти наибольшее значение этого отношения.

Задачу решили: 30
всего попыток: 89
Задача опубликована: 15.02.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Квадратную шоколадку разделили на n2 квадратных кусочков, из которых сложили 4 прямоугольника и при этом остался 1 кусочек. Все линейные размеры прямоугольников (длины и ширины) и квадратного кусочка различные. При каком наименьшем n такое разбиение возможно?

Задачу решили: 26
всего попыток: 47
Задача опубликована: 15.03.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В треугольнике ABC точка D является серединой отрезка AC. Точка E внутри отрезка BC такова, что |BE|=|AB| и угол BDE - прямой. Сумма углов при вершинах A и C равна 70 градусам. Найдите величину угла BED в градусах.

Задачу решили: 31
всего попыток: 44
Задача опубликована: 09.04.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

В вогнутом четырехугольнике АВСD стороны АВ=10, CD=6, BC=AD. Углы DAB=75°, ABC=15°. Найти площадь АВСD.

Задачу решили: 26
всего попыток: 33
Задача опубликована: 01.05.21 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2156.
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: forest (Александр Куц)

Определителем таблицы из 9-и чисел:
a b c
d e f
g h i
называется значение выражения:
a*e*i + b*f*g + c*d*h – c*e*g – a*f*h – b*d*i.

Дано число: n = 10100 + 1. Рассмотрим всевозможные таблицы указанного выше вида, когда каждый из 9-и чисел равен либо 1, либо n. Пусть их наибольший определитель равен x. Найдите сумму цифр числа x.

Задачу решили: 38
всего попыток: 48
Задача опубликована: 07.05.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

 

Два равных квадрата пресекаются так, что полученные красный, желтый и оранжевый цвета занимают одинаковую площадь Два квадрата, три цвета

Найдите косинус угла α.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.