Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
135
всего попыток:
184
Два друга гуляли по парку. Все дорожки в парке — концентрические окружности и "радиусы" — отрезки, соединяющие некоторые точки самой внешней окружности с центром. Находясь как раз у одной из точек пересечения окружности с "радиусом", они вдруг подумали: — А интересно, какой путь короче: если идти сейчас по "радиусу" до более маленькой окружности, по ней идти до следующего "радиуса" и вернутся по нему к нашей окружности (этот путь изображён на рисунке зелённым цветом), или просто продолжить путь по нашей окружности до той же точки (на рисунке: красный цвет)? Решили попробовать, разделились, пошли с одинаковой скоростью этими двумя разными путями и... пришли к точке встречи одновременно! Чему равен угол между этими двумя "радиусами"?
Задачу решили:
85
всего попыток:
101
Внутри треугольника ABC нашлись две точки, одна из которых удалена от прямых AB, BC и AC на расстояния 20, 24 и 30 соответственно, а другая — на расстояния 29, 27 и 24. Найдите радиус окружности, вписанной в треугольник ABC.
Задачу решили:
40
всего попыток:
165
Существует ли вписанный в окружность n-угольник с попарно различными сторонами, каждая из которых является стороной некоторого, вписанного в ту же окружность, правильного многоугольника? (Если не существует, введите 0; если существует, укажите минимальное значение n.)
Задачу решили:
35
всего попыток:
57
На листе клетчатой бумаги отмечено несколько узлов сетки (т.е. точек, в которых пересекаются вертикальные и горизонтальные линии) так, что внутри интервала, соединяющего любые две отмеченные точки вообще нет узлов сетки. Найдите наибольшее число отмеченных узлов.
Задачу решили:
77
всего попыток:
91
В окружность вписан четырёхугольник ABCD. Прямые AB и CD перпендикулярны. Диагонали: AC=80 и BD=39. Найдите диаметр окружности.
Задачу решили:
70
всего попыток:
104
Найдите наибольшее значение n≤2011, при котором в клетках доски n×n можно расставить фишки так, чтобы на любых двух горизонталях стояли одинаковые количества фишек, а на любых двух вертикалях — различные. (В одну клетку можно поставить не более одной фишки, а каждая фишка должна занимать ровно одну клетку.)
Задачу решили:
65
всего попыток:
100
Вписанный в окружность 2011-угольник разрезали на треугольники вдоль не пересекающихся внутри него диагоналей. Найдите наибольшее число прямоугольных треугольников.
Задачу решили:
152
всего попыток:
211
Треугольник ABC - равнобедренный: AB = AC. На стороне BC, длина которой равна 43, находится точка D. Дано: AD = 17 CD = 13 Найдите, чему равен угол ADC в градусах.
Задачу решили:
63
всего попыток:
85
В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).
Задачу решили:
104
всего попыток:
140
Равнобокая трапеция, описанная около окружности, делится биссектрисой тупого угла на 2 части так, что отношение площадей - целое число. Найдите это число.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|