Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
60
всего попыток:
114
Сколько существует пятизначных чисел-палиндромов, делящихся на 11?
Задачу решили:
27
всего попыток:
218
Найдите количество упорядоченных наборов целых чисел (a1, a2, ..., a8), удовлетворяющих следующим условиям:
Задачу решили:
54
всего попыток:
104
Среди пятизначных чисел с цифрами от 1 до 4 найдите количество тех, у которых никакие две соседние цифры не отличаются ровно на единицу.
Задачу решили:
79
всего попыток:
82
Дорога из пункта А в пункт В местами ровная, а местами - под гору или в гору. Скорость движения пешехода в гору 4 км/час, по ровному месту – 5 км/час, под гору – 6 км/час. Расстояние между А и В по дороге 9 км, пешеход прошел туда и обратно за 3 часа 41 минуту. Какая часть дороги (км) идет по ровным местам?
Задачу решили:
46
всего попыток:
84
Известно, что a15+a25 +...an5= 2004, ai - целые числа. Найдите минимальное положительное значение a1+a2 +...an?
Задачу решили:
40
всего попыток:
62
Пусть N равно произведению всех возможных значений (n2+nm+m2) для всех пар натуральных чисел n и m таких, что 1 ≤ n < m ≤ 100. Чему равен остаток от деления N на 101?
Задачу решили:
54
всего попыток:
92
Найдите наименьшее натуральное число, которое не может быть выражено в виде (2a-2b)/(2c-2d), где a, b, c, d - также натуральные числа.
Задачу решили:
36
всего попыток:
61
Найти сумму всех натуральных чисел a таких, что существует натуральное число b и верно: a+b2+(НОД(a,b))3=a·b·НОД(a,b)
Задачу решили:
60
всего попыток:
105
Найти количество упорядоченных троек натуральных чисел a < b < c таких, что a1/2 + b1/2 + c1/2 = 20001/2.
Задачу решили:
56
всего попыток:
74
На доске написаны n последовательных натуральных чисел, начиная с 1. Когда было стерто одно число, то оказалось, что среднее арифметическое стало равным 35 7/17. Какое число стерли?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|