img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 35
всего попыток: 44
Задача опубликована: 21.10.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В треугольнике АВС со сторонами |АВ|=20, |ВС|=16, |СА|=24 проведена прямая,параллельная стороне ВС, которая пересекает сторону АВ в точке М, а с сторону СА в точке Р. Найти длину отрезка МР при наименьшем радиусе описанной окружности около треугольника ВМР.

Задачу решили: 31
всего попыток: 39
Задача опубликована: 04.11.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

На внешней биссектрисе угла АВС отмечена точка D так, что она оказалась внутри угла ВАС и угол ВСD=60°. Середина отрезка BD отмечена точкой М. Найдите угол АМС в градусах, если известно, что |CD|=2|AB|, угол АВС=100°.

Задачу решили: 34
всего попыток: 48
Задача опубликована: 06.12.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

Внутри окружности проведены три хорды зигзагом АВ, ВС, CD. Равные по длине хорды AB и CD при продолжении в направлении В и D пересекаются в точке Е. Прямая ЕО (О - центр окружности) пересекает хорду ВС в точке F так,что |BF|:|FC|=4/9. Найти отношение |ЕВ|/|ВА|.

Задачу решили: 48
всего попыток: 64
Задача опубликована: 09.12.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Вокруг каждой черной клетки шахматной доски описана окружность. Какая доля шахматной доски покрыта полученными кругами? Ответ укажите в процентах, округлив до целого.

Задачу решили: 50
всего попыток: 57
Задача опубликована: 13.12.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Вершины квадрата PQRS, лежат на сторонах остроугольного треугольника ABC. Вершины P и Q лежат на стороне AB, вершина R лежит на стороне BC, а вершина S лежит на стороне AC. Длина стороны квадрата равна 4, а |AB|=8. Надите площадь треугольника?

Задачу решили: 33
всего попыток: 55
Задача опубликована: 16.12.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В прямоугольном треугольнике АВС (угол С - прямой) на гипотенузе отмечена точка К так,что отрезок СК делит биссектрису BD пополам. В треугольнике АСК все углы имеют целочисленные значения в градусах, два из которых являются нечетными числами и относятся друг другу в отношении 1:3. Найти значение угла ВАС в градусах.

Задачу решили: 48
всего попыток: 57
Задача опубликована: 06.01.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: vochfid

В египетском треугольнике 3, 4, 5 из прямого угла высота делит его на два треугольника. Найти отношение периметра основного треугольника к сумме радиусов окружностей, вписанных во все три треугольника.

Задачу решили: 22
всего попыток: 42
Задача опубликована: 08.01.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В треугольнике с целочисленными сторонами две биссектрисы делятся точкой пересечения в отношениях m:1 и n:1 (m,n - целые). Найдите наибольшее значение K=(m+n). В ответ введите наименьший периметр треугольника для найденного K.

Задачу решили: 51
всего попыток: 60
Задача опубликована: 10.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Длины двух сторон треугольника равны 31 и 22. Медианы, проведенные к этим сторонам, перпендикулярны. Найти длину третьей стороны.

Задачу решили: 21
всего попыток: 29
Задача опубликована: 31.01.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: vochfid

На сторонах AB, BC и CA треугольника ABC  расположены точки P, Q и R соответственно, при этом |AP| = |AR|, |BP| = |BQ| и |CQ| = |CR|. Какое максимальное количество разных наборов таких точек P, Q, R может существовать для протзвольного треугольника ABC?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.