Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
52
всего попыток:
76
Из бесконечной шахматной доски по границам клеток вырезана связная фигура (ладья может пройти из любой клетки в любую другую, не покидая доску, передвигаясь каждый раз на одну клетку). В вырезанной фигуре оказалось 2013 черных клеток. Каково максимальное возможное количество белых клеток в этой фигуре?
Задачу решили:
22
всего попыток:
155
У Санта-Клауса, как и обычно это бывает перед Новым Годом есть 8 различных подарков и несколько одинаковых мешков красного цвета (сам он синий). В каждом мешке лежит ровно два предмета(два мешка, два подарка или мешок и подарок). В частности, тот единственный мешок, который Санта-Клаус держит на плече, тоже содержит два предмета. Сколько существует способов разложить подарки по мешкам?
Задачу решили:
35
всего попыток:
68
Клетки бесконечной вправо клетчатой полоски последовательно занумерованы числами
Задачу решили:
33
всего попыток:
47
В обществе из 15 членов каждое непустое подмножество считается комиссией. В каждой комиссии нужно выбрать председателя, соблюдая правило: если комиссия C является объединением нескольких меньших комиссий, то председателем C должен быть один из председателей этих меньших комиссий. Cколькими способами можно выбрать председателей?
Задачу решили:
43
всего попыток:
112
Про 27 монет известно, что 26 из них настоящие и весят 1 грамм, а ещё одна монета фальшивая и весит m, m+1 или m+2 граммов (где m — натуральное число, известное взвешивающему). Оказалось, что за два взвешивания на чашечных весах без гирь можно определить вес фальшивой монеты. При каком наибольшем m это возможно?
Задачу решили:
48
всего попыток:
62
На окружности отмечены 2006 точек. Сначала Петя проводит N хорд с концами в этих точках. Затем Валя красит половину отмеченных точек в один цвет, а остальные – в другой. Петя выигрывает, если найдется хорда с концами разного цвета. При каком наименьшем N Валя не сможет ему помешать?
Задачу решили:
32
всего попыток:
68
Суду в качестве вещественного доказательства предъявлено 100 одинаковых по весу монет, вес каждой больше 10 г (однако суд не знает, что они одинаковы). К сожалению, имеющиеся в суде весы показывают вес любого груза с отклонением ровно в 1 г — иногда в бóльшую, а иногда в меньшую сторону (и, к счастью, суд знает об этом). При каком наибольшем k эксперт может доказать суду, что среди монет есть не менее k одинаковых?
Задачу решили:
38
всего попыток:
58
В очереди стояло 20 человек. Касса сломалась, и все перешли в соседнюю только что открывшуюся кассу. Сколькими способами они могут выстроиться в новую очередь так, чтобы человек, стоявший на месте с номером k изменил свой номер в очереди не более чем на k?
Задачу решили:
28
всего попыток:
210
Есть 1000 белых кубиков со стороной 1. Пушистая девочка Оля хочет сложить из них всех какой-нибудь параллелепипед, белый снаружи. Какое наименьшее число граней должен испачкать проказник Федя, чтобы ей помешать?
Задачу решили:
51
всего попыток:
82
Сколькими различными способами можно расставить в таблице 3x3 числа 1, 2, …, 9 таким образом, чтобы все суммы чисел по строкам и столбцам были нечётными?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|