Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
53
всего попыток:
69
Косинусы углов одного треугольника соответственно равны синусам углов другого треугольника. Найдите наибольший из шести углов этих треугольников (в градусах).
Задачу решили:
46
всего попыток:
55
Найти натуральное число n такое, что для углов остроугольного треугольника α, β, γ верно sin(nα)+ sin(nβ) + sin(nγ) < 0.
Задачу решили:
35
всего попыток:
86
Найти количество действительных чисел из замкнутого интервала [0, 2017] таких, что число x×sin(πx) - целое.
Задачу решили:
45
всего попыток:
59
В треугольнике ABC sin A : sin B : sin C = 5 : 7 : 9. Найдите cos (A + B).
Задачу решили:
39
всего попыток:
49
sin10x+cos10x=11/36. Найдите sin12x+cos12x.
Задачу решили:
46
всего попыток:
49
tan x + cot x + sec x + csc x = 6, найдите sin x + cos x.
Задачу решили:
41
всего попыток:
41
На горизонтальной плоскости из трех точек отстоящих от основания антенны на 100, 200 и 300 м, углы, под которыми она видна в сумме составляют 90°. Определите высоту антенны.
Задачу решили:
41
всего попыток:
43
В треугольнике углы A, B и C такие, что cos3A+cos3B+cos3C=1. Найти наибольший угол треугольника в градусах.
Задачу решили:
28
всего попыток:
36
Для угла x и чисел a, b, c и cos x верно соотношение acos2x+bcosx+c=0. Составьте квадратичное соотношение с числами a, b и c для cos 2x. В качестве ответа введите сумму коэффициентов таких, что наибольший общий делитель их был равен 1 для a = 12, b = 8, с = -3..
Задачу решили:
29
всего попыток:
43
В прямоугольном треугольнике ABC, с гипотенузой |BC|=a и длиной высоты из вершины A равной a/5. Гипотенуза разделена на 9 равных отрезков. Найдите тангенс угла под которым виден отрезок, содержащий середину гипотенузы.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|