Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
28
Какое наименьшее число сторон может иметь нечетноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?
Задачу решили:
40
всего попыток:
44
Дан параллелограмм ABCD с углом A, равным 60?. Точка O — центр окружности, описанной около треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение OK/AO.
Задачу решили:
34
всего попыток:
47
При каком наименьшем n шахматную доску n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?
Задачу решили:
38
всего попыток:
103
Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Задачу решили:
42
всего попыток:
47
У многогранника, описанного около сферы, большой гранью будем называть такую, что проекция сферы на плоскость целиком попадает в грань. Какое максимальное число больших гранией может быть у многогранника?
Задачу решили:
34
всего попыток:
60
Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?
Задачу решили:
23
всего попыток:
34
На какое минимальное число частей можно разрезать прямыми линиями любой треугольник, так что из них можно сложить равнобедренный треугольник той же площади.
Задачу решили:
48
всего попыток:
55
В вершинах кубика написали числа от 1 до 8, а на каждом ребре модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Задачу решили:
31
всего попыток:
42
На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?
Задачу решили:
34
всего попыток:
58
Имеется набор гирь со следующими свойствами: 1) В нем есть 5 гирь, попарно различных по весу. 2) Для любых двух гирь найдутся две другие гири того же суммарного веса. Какое наименьшее число гирь может быть в этом наборе?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|