Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
107
всего попыток:
148
Катер проплывает мимо острова с постоянной скоростью. Расстояния до острова в 8, 10 и 11 часов были равны 7, 5 и 11 километров соответственно. Каким будет расстояние в 12 часов?
Задачу решили:
81
всего попыток:
115
3 литра воды разлили в два сосуда. Из каждого сосуда поочереди переливают половину воды, находящейся в нем, в другой сосуд. Найдите отношение объема воды в сосуде с меньшим количеством к объему воды в сосуде с большим после 100 переливаний. Объемы воды в литрах округлите с точностью до 1 миллилитра.
Задачу решили:
111
всего попыток:
149
Решите уравнение (x возводится в степень x бесконечное число раз). В качестве ответа введите значение x9.
Задачу решили:
103
всего попыток:
129
Определите 3 последние цифры числа 79999.
Задачу решили:
38
всего попыток:
81
Известно, что для положительных действительных чисел a, b и c, верно: a2 + b2 + c2 = 5(ab+bc+ca)/2. Найдите минимум выражения (a+b+c)/(abc)1/3. Ответ укажите с точностью до 3-х знаков после запятой.
Задачу решили:
43
всего попыток:
180
На столе лежит 100 монет орлами вверх. За одно действие вы можете перевернуть ровно 93 монетки. Какое наименьшее количество действий нужно совершить, чтобы все монетки лежали вверх решками.
Задачу решили:
23
всего попыток:
57
Пусть n - положительное действительное число, такое что уравнение nx2=n[x2]+x имеет 2014 действительных решений ([x] - целая часть x). Множество всех таких n находятся в минимально возможном полуинтервале (a, b].
Задачу решили:
37
всего попыток:
61
Пусть a, b, c, d - неравные нулю действительные числа такие, что функция f(x)=(ax+b)/(cx+d) определена на R\{-d/c} и обладает свойствами: 1) f(19)=19 2) f(97)=97 3) f(f(x))=x Предположим, что имеется единственное число α такое, что α≠f(x) для всех действительных x. Найдите α.
Задачу решили:
53
всего попыток:
71
Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.
Задачу решили:
42
всего попыток:
58
Найти количество функций удовлетворяющих следующему условию: f(x2+yf(z))=xf(x)+zf(y) для всех действительных x, y и z.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|