Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
61
Пусть a, b, c, d - неравные нулю действительные числа такие, что функция f(x)=(ax+b)/(cx+d) определена на R\{-d/c} и обладает свойствами: 1) f(19)=19 2) f(97)=97 3) f(f(x))=x Предположим, что имеется единственное число α такое, что α≠f(x) для всех действительных x. Найдите α.
Задачу решили:
53
всего попыток:
71
Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.
Задачу решили:
60
всего попыток:
105
Найти количество упорядоченных троек натуральных чисел a < b < c таких, что a1/2 + b1/2 + c1/2 = 20001/2.
Задачу решили:
42
всего попыток:
58
Найти количество функций удовлетворяющих следующему условию: f(x2+yf(z))=xf(x)+zf(y) для всех действительных x, y и z.
Задачу решили:
47
всего попыток:
55
Найдите наибольшее целое число n < 1000 такое, что существуют 2 неотрицательных целых числа, удовлетворяющих свойству: n = (a2+b2)/(ab-1).
Задачу решили:
49
всего попыток:
72
Найдите количество действительных решений уравнения:
Задачу решили:
39
всего попыток:
64
Пусть a > b > c - целые длины сторон треугольника такие, что
Задачу решили:
23
всего попыток:
97
a1+a2+a3+a4+a5=1
Задачу решили:
58
всего попыток:
73
Пусть x и y ненулевые действительные числа такие, что x2+y2=x2y2. Найти максимум (5x+12y+7xy)/(xy).
Задачу решили:
46
всего попыток:
84
Натуральные числа p и q такие, что x2-x-1 является делителем px17-qx16+1. Найдите p.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|