Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
67
Назовем непустое подмножество A ⊂ Ζ целых чисел набором типа N, если: Сколько существует различных наборов типа 18?
Задачу решили:
43
всего попыток:
77
Найти две последние ненулевые цифры числа 2017!.
Задачу решили:
44
всего попыток:
54
В треугольнике ABC длины сторон равны 5, 321/2, 7. Найти площадь треугольника со сторонами sin A, sin B, sin C.
Задачу решили:
30
всего попыток:
45
Следующие выражения с натуральными числами Найдите все такие комбинации для n=5 и введите сумму всех входящих в них чисел (с учетом повторений).
Задачу решили:
23
всего попыток:
39
Равнобедренный треугольник ABC разделен на три треугольника, как показано на рисунке: При этом прямоугольные треугольники BCD и BDE равны по площади. Все вписанные окружности имеют радиус 1. Найдите площадь треугольника ABC.
Задачу решили:
39
всего попыток:
71
В параллелограмме площадью 2009 проведены две параллельные сторонам линии, которые пересекаются на диагонали. Известно, что площади параллелограммов 1, 2 и 3 являются различными целыми числами и составляют геометрическую прогрессию. Определите максимальную площадь параллелограмма 1.
Задачу решили:
28
всего попыток:
57
Стороны треугольника со длинами сторон 3, 4 и 5 являются диаметрами трех окружностей. Еще одна окружность описывает эти три окружности. Определите ее диаметр.
Задачу решили:
46
всего попыток:
72
Марья Ивановна написала число на доске и попросила учеников назвать его делители. Первый ученик сказал, что число делится на 2. Марья Ивановна сказала, что почти все правы, кроме двух соседей по парте - Вовочки и его приятеля, которые произнесли свои фразу последовательно, первым сказал Вовочка. Каким по порядку произнес свою фразу Вовочка?
Задачу решили:
52
всего попыток:
66
Легко вычислить 03+13+23=32, 13+23+33=62. Найдите следующие три последовательные натуральные числа, которые обладают таким же свойством. В ответе укажите первое из них.
Задачу решили:
41
всего попыток:
60
Если сложить 10 правильных пятиугольников, то можно получить правильный десятиугольник. Точно так же из n правильных m-угольников (m≥5) сложили все возможные правильные n-угольники. Найдите сумму всех различных возможных m.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|