Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
61
всего попыток:
143
В 6 узлов клетчатой решетке вбили 6 гвоздей, 4 из которых образуют квадрат 4 на 4, и соединили их замкнутой нитью так, чтобы получился шестиугольник наименьшей возможной площади. Найдите его площадь.
Задачу решили:
58
всего попыток:
208
Нить согнули в три раза, потом снова в три раза, после чего сделали не по сгибам разрез. Два из полученных кусков имеют длину 2 см и 6 см. Какой максимальной могла быть длина нити в сантиметрах.
Задачу решили:
75
всего попыток:
100
В прямоугольном треугольнике ABC угол C = 90°, угол B = 40°. На сторонах AB и BC выбраны такие точки D и E соответственно, что EAD = 5° и ECD = 10°. Найдите угол EDC в градусах.
Задачу решили:
46
всего попыток:
85
В треугольнике угол ABC прямой. Точка P на стороне AC выбрана так, что |AP|/|PC|=3/2, а точка Q такая, что |AQ|/|QB|=3, а угол AQP=2*PQC. Чему равен угол PQC в градусах?
Задачу решили:
42
всего попыток:
152
Найдите все треугольники, длины сторон которых целые числа и площади и периметры у каждого равны между собой (как числа). У каждого такого треугольника выберите самую длинную сторону и сложите все эти длины. Какое число у вас получилось?
Задачу решили:
46
всего попыток:
84
Известно, что a15+a25 +...an5= 2004, ai - целые числа. Найдите минимальное положительное значение a1+a2 +...an?
Задачу решили:
45
всего попыток:
94
В прямоугольном треугольники периметр (P) и площадь (S) - целые числа и (P+4)=(S-1)(P-4). Найдите сумму всех возможных переиметров таких треугольников?
Задачу решили:
40
всего попыток:
62
Пусть N равно произведению всех возможных значений (n2+nm+m2) для всех пар натуральных чисел n и m таких, что 1 ≤ n < m ≤ 100. Чему равен остаток от деления N на 101?
Задачу решили:
25
всего попыток:
138
Для треугольника ABC верны следующие условия: cos B + cos C = 1 <C - <B = 46° Пусть O - центр описанной окружности, I - центр вписанной окружности, H - ортоцентр (точка пересечения высот) треугольника. Найти угол OIH.
Задачу решили:
42
всего попыток:
102
Периметр треугольника со сторонами a, b, c равен 2. Найдите максимальное значение k такое, что: (1-a)/b + (1-b)/c + (1-c)/a ≥ k.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|