Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
58
Пусть 0 < x ≤ y ≤ z и xy+yz+zx=3. Найти максимум xy3z2.
Задачу решили:
22
всего попыток:
125
Сколько существует способов разломать плитку шоколада размера 6x4 на части 2x1?
Задачу решили:
43
всего попыток:
85
Числа от 1 до 100 разделены на множества так, что в каждом множестве любое число не делится на другие числа множества. Какое минимальное число таких множеств возможно?
Задачу решили:
59
всего попыток:
70
Натуральное число N имеет ровно 10 делителей, 2N - ровно 15 делителей, 3N - ровно 20 делителей. Сколько делителей у числа 4N?
Задачу решили:
51
всего попыток:
60
На стороне 12-угольника построен квадрат. Найдите отмеченный угол в градусах.
Задачу решили:
28
всего попыток:
66
В русском алфавите 33 буквы. Посчитайте сколько можно составить слов из 6 букв таких, что в словах используются только разные буквы, и не встречаются буквы, которые стоят в алфавите рядом. Например, слово "ОГУРЕЦ" удовлетворяет условию, а "СВЁКЛА" - нет
Задачу решили:
44
всего попыток:
103
Найти количество целочисленных пар (x, y) таких, что 0 ≤ y ≤ 2017 и x2+y2+(x+y)2=y3.
Задачу решили:
24
всего попыток:
42
Найти количество пар натуральных чисел (m, n) m < n ≤ 100 для которых есть по крайней мере одно натуральное число k (m < k < n) которое делится на любой общий делитель m и n.
Задачу решили:
41
всего попыток:
60
Пусть для любого натурального n: f(n)=nf(n-1), f(1)=1. Найти две последние цифры числа f(2018).
Задачу решили:
26
всего попыток:
67
Назовем непустое подмножество A ⊂ Ζ целых чисел набором типа N, если: Сколько существует различных наборов типа 18?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|