Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
146
всего попыток:
229
Трое братьев вскапывали огород. После работы их встретил отец.
Задачу решили:
128
всего попыток:
297
Рассматриваются все натуральные числа n от 1 до 2010 включительно. Для скольких из них число nn является квадратом целого числа?
Задачу решили:
115
всего попыток:
210
Вася записал в тетрадке числа 1, 2, 3, ..., 11. Вася и Петя по очереди (начинает Вася) стирают по три любых числа до тех пор, пока не останется два числа. Вася выигрывает у Пети количество монеток, равное разности этих двух чисел. Какой максимальный выигрыш может обеспечить себе Вася при правильной стратегии обоих игроков?
Задачу решили:
60
всего попыток:
97
Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.
Задачу решили:
122
всего попыток:
257
В ряду 10 монет. Сначала подряд лежат несколько (от 1 до 9) настоящих, которые весят по 10 граммов, а все следующие за ними — фальшивые, весящие по 9 граммов. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить, какие монеты — настоящие, а какие — фальшивые?
Задачу решили:
63
всего попыток:
143
Найдите максимально возможное число членов последовательности, состоящей из таких ненулевых целых чисел, что сумма любых семи из них, идущих подряд, — положительна, а любых одиннадцати, идущих подряд, – отрицательна.
Задачу решили:
136
всего попыток:
185
Семь шахматистов сыграли турнир в один круг. (За победу начислялось 1 очко, за ничью — 1/2, за поражение — 0.) Победитель набрал в два раза больше очков, чем в сумме шахматисты, занявшие три последних места. Петя занял 4-е место, набрав три очка. Как он сыграл с занявшим 3-е место (1 — выиграл, 0 — проиграл, 1/2 — сыграл вничью)?
Задачу решили:
93
всего попыток:
262
Мне надоели обычные игральные кубики, и я решила сделать свой. От обычного кубика мой отличается только тем, что на любых двух соседних гранях количество точек различается как минимум на 2. Какое наименьшее число точек мне понадобится? (Не забудьте о том, что на различных гранях должно быть различное количество точек, и не менее одной точки на каждой грани!)
Задачу решили:
93
всего попыток:
215
По кругу выписаны числа 1,2,3,...,10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшую из них. Какое наибольшее число могло появиться на доске?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|