img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 166
всего попыток: 184
Задача опубликована: 09.05.14 08:00
Прислал: TALMON img
Источник: Случай из жизни
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

Когда наша туристическая группа собралась в аэропорту перед отправкой в гостиницу, на наших чемоданах наклеили бирки с номерами комнат. Приехав в гостиницу, каждый поднимался к своему номеру, где его ждал его чемодан.

Когда мы с женой уже устроились, к нам постучали. Женщине в комнату № 809 не принесли чемодан, и она вместе с руководителем группы стали спрашивать по всем комнатам, не к ним ли принесли чемодан по ошибке.

Утром я встретил женщину и спросил: Нашли чемодан? Она радостно ответила: Конечно!

Где был чемодан?

Задачу решили: 19
всего попыток: 41
Задача опубликована: 29.07.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Рассмотрим число n=1096375199328173. Рассмотрим все натуральные числа от 1 до n-1 включительно. Рассмотрим остатки от деления квадратов этих чисел на n. Сколько всего получится различных остатков?

Задачу решили: 28
всего попыток: 57
Задача опубликована: 03.08.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Рассмотрим число n=106. Найдите сумму:
S = Σ(-1)m+1•[n / (p1•p2•...•pm)], 
где (p1•p2•...•pm) – всевозможные произведения различных простых чисел, m=1, 2, 3, ..., [x] – целая часть x.

Задачу решили: 37
всего попыток: 101
Задача опубликована: 09.11.15 08:00
Прислал: TALMON img
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Функция Эйлера φ(n) определена для каждого натурального числа n как количество натуральных чисел, непревосходящих n, взаимно простых с n.

Найдите сумму всех натуральных чисел n, для которых φ(n)=128.

Задачу решили: 36
всего попыток: 65
Задача опубликована: 17.10.16 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: georgp

Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?

Задачу решили: 97
всего попыток: 109
Задача опубликована: 22.01.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Темы: логикаimg
Лучшее решение: solomon

В соревновании участвовало 20 спортсменов. Каждому из них было предложено заранее угадать, какое место он займёт. Петя сказал, что он займёт последнее место. 19 спортсменов заняли места похуже, чем они предполагали. Какое место занял Петя?

Задачу решили: 45
всего попыток: 59
Задача опубликована: 21.03.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Buuul (Майк Бул)

Элементы квадратной матрицы 3 на 3 - различные действительные числа. Произведения трёх элементов каждой строки, каждого столбца и каждой большой диагонали равны одному и тому же натуральному числу. Какое минимально возможное значение этого натурального числа?

Задачу решили: 28
всего попыток: 53
Задача опубликована: 20.01.20 08:00
Прислал: TALMON img
Источник: Journal of Recreational Mathematics
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Назовём натуральное число интересным, если его запись в десятичной системе счисления состоит из чётного количества цифр и его «левая половина» равна его «правой половине». Например, 2020 - это интересное число. Найдите наименьшее интересное число, являющееся квадратом целого числа.

Задачу решили: 19
всего попыток: 44
Задача опубликована: 31.07.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Расмотрим простое число p=1000000007=109+7 и все целые числа n, которые не делятся на p. Какие значения, не превосходящие 14, может принимать остаток от деления n2 на p?

Введите ответ в виде строки из 14-и НУЛЕЙ и ЕДИНИЦ, где на k-м месте (слева) стоит ЕДИНИЦА, если остаток от деления n2 на p может принимать значение k, а в противном случае - НОЛЬ.

Задачу решили: 28
всего попыток: 40
Задача опубликована: 12.04.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим систему двух неравенств с целочисленными коэффициентами:

Ax² + Bx + C ≤ 0
Dx² + Ex + F ≤ 0

Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.