Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
166
всего попыток:
184
Когда наша туристическая группа собралась в аэропорту перед отправкой в гостиницу, на наших чемоданах наклеили бирки с номерами комнат. Приехав в гостиницу, каждый поднимался к своему номеру, где его ждал его чемодан. Когда мы с женой уже устроились, к нам постучали. Женщине в комнату № 809 не принесли чемодан, и она вместе с руководителем группы стали спрашивать по всем комнатам, не к ним ли принесли чемодан по ошибке. Утром я встретил женщину и спросил: Нашли чемодан? Она радостно ответила: Конечно! Где был чемодан?
Задачу решили:
36
всего попыток:
65
Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?
Задачу решили:
97
всего попыток:
109
В соревновании участвовало 20 спортсменов. Каждому из них было предложено заранее угадать, какое место он займёт. Петя сказал, что он займёт последнее место. 19 спортсменов заняли места похуже, чем они предполагали. Какое место занял Петя?
Задачу решили:
45
всего попыток:
59
Элементы квадратной матрицы 3 на 3 - различные действительные числа. Произведения трёх элементов каждой строки, каждого столбца и каждой большой диагонали равны одному и тому же натуральному числу. Какое минимально возможное значение этого натурального числа?
Задачу решили:
28
всего попыток:
40
Рассмотрим систему двух неравенств с целочисленными коэффициентами: Ax² + Bx + C ≤ 0 Найдите минимально возможную сумму |A| + |B| + |C| + |D| + |E| + |F|, при которой эта системы имеет действительные решения, но не имеет рационального решения?
Задачу решили:
20
всего попыток:
55
"Докажем", что все лошади одного цвета. Укажите номер первого ошибочного пункта в следующем изложении: Докажем по индукции, что для любого натурального числа n выполняется следующее утверждение: Любая группа из n лошадей состоит из лошадей одного цвета. 1. Для n=1 утверждение верно. Действительно, любая группа из ОДНОЙ лошади состоит из лошадей одного цвета. Покажем, что из выполнимости утверждения для какого-то n следует его выполнимость для n+1. 2. Пусть утверждение верно для какого-то n. Рассмотрим любую группу из n+1 лошадей. 3. Удалим из этой группы одну лошадь. Согласно предположению индукции, все оставшиеся n лошадей одного цвета. 4. Вернём удалённую лошадь, а вместо неё удалим другую лошадь. 5. Опять все оставшиеся n лошадей одного цвета. 6. Следовательно, все n+1 лошадь одного цвета. 7. Теорема доказана!
Задачу решили:
23
всего попыток:
106
На ступенчатой клеточной доске показан замкнутый маршрут козлотура, состоящий из 6-и прыжков: Найдите замкнутый маршрут козлотура на этой же доске, содержащий максимально возможное число прыжков. Дважды прыгать в одну клетку нельзя. В ответе укажите число прыжков козлотура в этом маршруте.
Задачу решили:
29
всего попыток:
33
Обозначим: Например: Также обозначим: Например: Найдите сумму S1 + S2.
Задачу решили:
18
всего попыток:
32
В четыре стакана налито 2 мл, 5 мл, 15 мл, 11 мл воды. Разрешена такая операция: удвоение количества воды в стакане путём переливания из другого стакана (содержащего достаточное для этого количество воды). За какое минимальное количество операций можно опустошить два стакана? [Решения проверяются в ручном режиме. Укажите в решении, какие конкретные переливания предлагаете. Доказательство минимальности не обязательно.]
Задачу решили:
7
всего попыток:
18
За какое минимальное количество поворотов на 180 градусов можно "перекрасить" собаку, построенную (сконструированную) из змейки Рубика (см. рисунки)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|