Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
94
всего попыток:
199
Через одну и ту же точку провели 2009 окружностей. На какое наибольшее число частей они могут разбить плоскость?
Задачу решили:
61
всего попыток:
162
Точка М - середина стороны BC треугольника ABC. Известно, что. Найдите максимальное значение . Ответ дайте в градусах.
Задачу решили:
65
всего попыток:
121
Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство: Чему равно K+G для n = 100.
Задачу решили:
75
всего попыток:
113
Найдите количество 11-элементных подмножеств множества {1, 2, ... , 23}, сумма элементов которых равна 194.
Задачу решили:
35
всего попыток:
82
На окружности выбраны точки , , , для которых
Задачу решили:
38
всего попыток:
295
Найдите наименьшее натуральное n, такое что существует функция f:{1,2,...,20} → {1,2,...,n}, удовлетворяющая следующему условию: 2·f(k+1)<f(k)+f(k+2), k=1,2,...,18.
Задачу решили:
44
всего попыток:
80
Четырёхугольник вписан в окружность , , , . Прямые и пересекаются в точке , . Прямая, проходящая через точку и перпендикулярная пересекает окружность в точке , прямые и пересекаются в точке , и пересекаются в точке . Найдите длину отрезка .
Задачу решили:
41
всего попыток:
59
В последовательности четыре единицы, три двойки и три тройки. Пусть и
(Ответ дробный)
Задачу решили:
65
всего попыток:
176
Найдите количество упорядоченных пар целых чисел , удовлетворяющих условию
Задачу решили:
48
всего попыток:
355
На экзамене 16 школьников решали 30 задач. Каждый ученик верно решил не более 15 задач, а каждую задачу решило не менее 8 школьников. При этом для любой пары школьников количество задач, решенных ими обоими, одинаково и равно n. Найдите n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|