Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
49
Длина стороны правильного семиугольника равна 7. На каждой из них отмечено по 8 точек (включая вершины), разбивающих сторону на единичные отрезки. Через каждые 2 точки проведены прямые линии. Сколько получилось различных прямых.
Задачу решили:
42
всего попыток:
48
В выпуклом девятиугольнике проведены все диагонали. Углы при каждой вершине закрасили в два цвета - черный и белый, через один, начиная всегда с черного. Найдите в градусах сумму всех "черных" углов.
Задачу решили:
27
всего попыток:
68
81 оловянный солдатик построен в каре (это расстановка в виде квадрата). Какое наименьшее число солдатиков можно передвинуть так, чтобы все 81 образовали каре большего размера, в сравнении с первоначальным?
Задачу решили:
26
всего попыток:
79
Из спичек сложили правильный шестиугольник, изображенный на рисунке. В нем спрятаны контуры нескольких правильных шестиугольников. Какое наименьшее количество спичек нужно убрать, чтобы контуры всех правильных шестиугольников оказались разрушенными?
Задачу решили:
35
всего попыток:
42
Фигура "Вертушка" состоит из квадрата и четырех его половинок. На рисунке слева приведено разрезание вертушки на пять частей, на рисунке справа показано, как из этих частей сложить квадрат. Найдите в градусах величину острого угла с вершиной в точке А.
Задачу решили:
37
всего попыток:
103
Полный набор пентамино содержит 12 фигурок, каждая из которых состоит из пяти единичных квадратов. Сколькими различными способами можно сложить прямоугольник 5х3, используя три пентамино? Уточним: при построении прямоугольника фигурки пентамино можно как угодно поворачивать и переворачивать. Решения считаются различными, если их нельзя совместить наложением.
Задачу решили:
47
всего попыток:
80
Сколько квадратов со стороной 4 можно поместить без наложений в равносторонний треугольник со стороной 13?
Задачу решили:
49
всего попыток:
54
Вершины трех квадратов ОА1В1С1, ОА2В2С2 и ОА3В3С3 обозначены по часовой стрелке (см. рис). Найдите площадь треугольника В1В2В3, если площадь треугольника А1А2А3 равна 21.
Задачу решили:
45
всего попыток:
95
Разрежьте фигуру "Елочка", изображенную на рисунке на наименьшее число частей и сложите из них квадрат. В ответе укажите число этих частей.
Задачу решили:
37
всего попыток:
72
Прямая пересекает треугольник со сторонами 5, 7 и 9 так, что она делит пополам и его периметр, и площадь. В каком отношении она делит большую сторону треугольника? В ответе укажите отношение меньшей части к большей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|