img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mika решил задачу "Дед Мороз и дети" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 71
всего попыток: 121
Задача опубликована: 14.06.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

120 школьников выстроили друг за другом. Никакие две девочки не стоят ни дружка за дружкой, ни через семь человек. Найти максимальное количество девочек.

Задачу решили: 28
всего попыток: 144
Задача опубликована: 26.06.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти максимальное натуральное N такое, что N! можно представить в виде суммы более чем 9-ти последовательных натуральных чисел не более, чем 666-ю способами.

Задачу решили: 38
всего попыток: 49
Задача опубликована: 23.08.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Вася кодирует стихи, заменяя все буквы русского алфавита различными числами от 1 до 33, и посылает Маше ссылку на текст и наборы чисел, являющиеся суммами кодов букв в словах. Так, взяв Пушкина, он закодировал Мой дядя самых честных правил 11 8 131 134 165 Когда не в шутку занемог 46 18 27 52 84 Закодируйте васиным кодом слова КРИМПЛЕН, ШТУЧКА, ЗАВОД, ЙОГ. В ответе введите произведение полученных чисел.

Задачу решили: 51
всего попыток: 83
Задача опубликована: 30.09.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти периметр треугольника наибольшей площади со сторонами a, b, c такими, что

0 < a <= 3,5 <= b <= 5,5 <= c <= 7,5

Результат округлить до двух знаков после запятой.

Задачу решили: 34
всего попыток: 189
Задача опубликована: 02.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Лева клонирует любимую овечку. Имя клона формируется на основе даты (день месяца, день недели, год) клонирования: первые 2 символа - заглавные буквы латинского алфавита,  третий - номер дня недели, далее, "_" и год. Все буквы в алфавитном порядке занумерованы, начиная с 1. Из пары букв имени одна должна быть гласной (A, E, I, O, U, W, Y), другая - согласной и сумма их номеров должна равняться числу (дню) в месяце. Так для клона, произведенного 20 сентября 2013г., в пятницу, имя может иметь вид SA5_2013. За один день нельзя сделать больше одного клона.

Если имена должны быть уникальными, какое максимальное количество клонов может произвести на свет Лева за 2012-2013 годы?

Задачу решили: 47
всего попыток: 97
Задача опубликована: 04.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100

Найти максимальную длину такой последовательности натуральных чисел N(i), что

N(i) <= 2013 для любого i,

N(i) = | N(i-1) - N(i-2) | для i>2

Задачу решили: 40
всего попыток: 111
Задача опубликована: 09.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Дано N натуральных чисел, не превосходящих 100000. Известно, что все числа различны, и ни одно из них не равно произведению двух других.

Найти максимальное N.

Задачу решили: 25
всего попыток: 65
Задача опубликована: 25.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В окружность Q целочисленного радиуса вписан четырехугольник ABCD, длины всех сторон которого - попарно различные целые числа. Более того, целочислены и длины диагоналей AC и BD.

tt.jpg

Пусть E - точка пересечения касательной к окружности Q, проведенной через точку C, с продолжением стороны AD.  Угол AEC равен углу ACD, и ABCD - четырехугольник минимальной площади, удовлетворяющий всем этим условиям. Найти произведение площадей треугольников DAB и DCB.

Задачу решили: 22
всего попыток: 227
Задача опубликована: 30.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Пусть S - основание системы счисления, в которой существует не менее 5 чисел 1<D1<D2<D3<D4<D5 таких, что остаток от деления любого числа на Di (1<=i<=5) равен остатку от деления суммы его цифр на Di. Найти 5 минимальных различных значений S и ввести их сумму (в 10-ичной системе счисления).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.