img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 126
всего попыток: 337
Задача опубликована: 28.01.10 21:35
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

У Вас есть 5 камешков, массы любых двух из которых различны, и чашечные весы без гирь. За какое наименьшее число взвешиваний Вам удастся гарантированно расположить камешки по возрастанию массы?

Задачу решили: 63
всего попыток: 143
Задача опубликована: 29.01.10 22:37
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите наибольшее целое число, десятичная запись которого обладает следующими свойствами: 1) она не заканчивается 0; 2) в результате вычёркивания одной из её цифр — но не первой — получается делитель исходного числа (точнее, его десятичная запись).

Задачу решили: 61
всего попыток: 254
Задача опубликована: 08.02.10 21:49
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Конечная арифметическая прогрессия с ненулевой разностью состоит из целых положительных чисел, десятичная запись каждого из которых не содержит ни одной девятки. Найдите наибольшее число членов в такой прогрессии.

Задачу решили: 141
всего попыток: 237
Задача опубликована: 11.02.10 20:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Random (Руслан Головин)

На девяти жетонах написаны различные цифры от 1 до 9 (по одной цифре на каждом жетоне). Двое игроков берут по очереди по одному жетону. Выигрывает тот, у кого первого среди взятых им жетонов окажутся три, сумма цифр на которых равна 15. Кто выиграет, если соперник не будет поддаваться? (Если выиграет первый игрок — введите 1, если второй — введите 2, если будет ничья — введите 0.)

Задачу решили: 80
всего попыток: 576
Задача опубликована: 13.02.10 17:39
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наименьшее число матчей нужно провести, чтобы из 24 теннисистов гарантированно определить двух сильнейших, т.е. честно разыграть между всеми участниками I и II места? (Любые два участника играют в разную силу; в каждом матче побеждает сильнейший; если А сильнее Б, а Б сильнее В, то А сильнее В.)

Задачу решили: 143
всего попыток: 264
Задача опубликована: 22.02.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

У Вас есть 8 одинаковых по размеру и внешнему виду шариков, среди которых 4 алюминиевых и 4 дюралевых. Различить их можно только по весу. За какое минимальное число взвешиваний на чашечных весах без гирь Вам удастся найти среди них два шарика, сделанных из разных металлов? (Массы всех шариков из одного и того же металла совпадают.)

Задачу решили: 127
всего попыток: 209
Задача опубликована: 26.02.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Father

В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)

Задачу решили: 51
всего попыток: 346
Задача опубликована: 07.04.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В квадратной таблице 10×10 написаны все целые числа от 1 до 100 — по одному числу в каждой ячейке — так, что числа, отличающиеся друг от друга на ±1, стоят в соседних (по горизонтали или по вертикали) ячейках. Найдите наименьшую сумму 10 чисел, стоящих на диагонали таблицы.

Задачу решили: 70
всего попыток: 278
Задача опубликована: 28.04.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Команда из 25 школьников участвует следующем конкурсе. Каждому из них надевают кепку одного из трёх заранее известных цветов так, что каждый видит кепки своих друзей, но не видит своей. После этого каждый школьник пишет на карточке свою фамилию и предполагаемый цвет своей кепки (подглядывать, что пишут другие, нельзя). Команда получает столько очков, сколько было сдано карточек с правильными ответами. Какое наибольшее число очков может гарантированно обеспечить себе команда, если школьники заранее договорятся о своих действиях?

Задачу решили: 263
всего попыток: 324
Задача опубликована: 30.04.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

На школьном вечере девочки и мальчики несколько раз танцевали парами. Каждая девочка танцевала 4 раза, а каждый мальчик — 3 раза. Всего на вечере было 112 школьников. Сколько было девочек?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.