img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 46
всего попыток: 61
Задача опубликована: 29.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Последовательность целых чисел \{a_n\} такова, что a_1 = 1, a_2 = 2, и для некоторого натурального k выполняется


a_{n+k} = a_n, \quad n = 1, 2, \ldots

Также известно, что последовательность b_n = a_{n+2} - a_{n+1} + a_n обладает следующим свойством

b_{n+1} = \cfrac{1 + b_n^2}{2},\quad n = 1, 2, \ldots

Найдите значение \sum \limits_{n = 1} ^{60} a_n.

Задачу решили: 23
всего попыток: 252
Задача опубликована: 09.11.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На стороне BC выпуклого четырёхугольника произвольным образом выбрана точка E. Окружности, вписанные в треугольники ABE, CDE, AED, имеют общую касательную. Найдите длину стороны AD, если AB=32, BC=36, CD=48. В ответе введите сумму минимального и максимального возможных значений.

Задачу решили: 87
всего попыток: 132
Задача опубликована: 16.11.12 08:00
Прислал: pvpsaba img
Источник: Грузинская национальная олимпиада по математи...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти минимальное значение выражения: x8+y8-3x2y2, х и у - действительные числа.

Задачу решили: 65
всего попыток: 77
Задача опубликована: 19.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pvpsaba (Saba Dzmanashvili)

Дан выпуклый четырехугольник АВСD. Серединные перпендикуляры к диагоналям BD и AC пересекают AD в точках  X и Y соответственно, причем X лежит между А и Y. Оказалось что прямые BX и CY параллельны. Найти угол (в градусах) между BD и АС.

Задачу решили: 64
всего попыток: 66
Задача опубликована: 26.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Серединные перпендикуляры к диагоналям BD и АС вписанного четырехугольника АВСD пересекают сторону AD  в точках X и Y соответственно. Пусть М середина ВС и расстояние от М до прямой ВХ = k, а расстояние до прямой СY равно u. Найти отношение k/u. 

Задачу решили: 69
всего попыток: 88
Задача опубликована: 30.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.

Задачу решили: 56
всего попыток: 277
Задача опубликована: 05.12.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Десять школьников стоят в ряд. Каждую минуту какие-то два соседних школьника меняются местами. Через некоторое время выяснилось, что каждый из школьников успел побывать на первом и последнем месте. Найдите минимальное число минут которое могло пройти.

Задачу решили: 108
всего попыток: 229
Задача опубликована: 07.12.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Angelina

В отряде восемь бойцов. Каждую ночь трое уходят в разведку, причём, никакие двое бойцов не должны ходить в разведку вместе дважды. Найдите максимальное возможное число ночей, в которые отряд может посылать разведчиков.

Задачу решили: 38
всего попыток: 187
Задача опубликована: 10.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

22551.jpg

Продолжения сторон (AD и BC) и (AB и CD) выпуклого четырехугольника ABCD пересекаются в точках E и F соответственно. Для определенности будем считать, что E и F лежат по одну сторону от прямой AC. (см.рис.) Внутри диагонали AC произвольным образом выбрана точка G. Прямые BG || DH || EI || FJ параллельны друг другу, а точки H, I, J являются точками пересечения соответствующих прямых с прямой AC так, что |DH|=a,  |EI|=b, |FJ|=c. Найдите длину отрезка |BG|, если a=9, b=3, c=6.

Задачу решили: 101
всего попыток: 116
Задача опубликована: 12.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найдите максимально возможное значение выражения

x/(x2+3)+y/(y2+3), если x>0, y>0, x·y=1, x,y - действительные числа. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.