Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
215
Найдите количество целых чисел 1 ≤ n ≤ 10000, которые могут быть представлены в виде n=[2x]×[3x], где x - действительное число, [x] - целая часть числа x.
Задачу решили:
81
всего попыток:
126
m и n - целые числа такие, что m2=n2+8n-3. Найдите сумму всех таких возможных n.
Задачу решили:
40
всего попыток:
242
В школе учится 100 учеников и для каждого имеется свой шкафчик. Все школьники имеют свои номера, соответствующие номерам шкафчиков. Изначально все шкафчики закрыты. Школьники приходят в порядке нумерации. Когда приходит школьник 1, то он открывает все шкафчики. Школьник 2 закрывает каждый 2-й шкафчик. Школьник 3 изменяет состояние каждого 3-го шкафчика: если открыт, то закрывает, если закрыт, то открывает. Школьник 4 изменяет состояние каждого 4-го шкафчика. И т.д. до 100-го школьника. Если какой-то школьник не приходит, то никто не выполняет за него указанную процедуру. В один из дней все шкафчики были закрыты, кроме 1-го. Сколько в этот день отсутствовало школьников?
Задачу решили:
35
всего попыток:
56
Рассмотрим все кубические многочлены p(x)=x3+ax2+bx+c с действительными коэффициентами. Найдите минимальное возможное значение max |p(x)| среди всех таких многочленов для всех -1 ≤ x ≤ 1.
Задачу решили:
62
всего попыток:
140
На одном берегу реки собралась компания: отец с двумя сыновьями, мать с двумя дочерьми и шериф с заключенным. Все они хотя переплать на другой берег. При этом: 1. Детишки не могут одни находиться на плоту. 2. Шериф не может оставлять заключенного с остальными. 3. Мужчина не может оставлять своих двух сыновей одних с женщиной, а женщина своих дочерей с мужчиной. 4. Плот не может плыть сам по себе, а на плоту могут находиться не более 2 человек. Какое минимальное количество раз плот причалит к противоположному берегу, чтобы перевезти всю компанию.
Задачу решили:
78
всего попыток:
99
Найти сумму всех натуральных n таких, что n2+24n+16 является квадратом целого числа.
Задачу решили:
38
всего попыток:
74
Пусть p(x)=x2015+2015 и a(x) - остаток от деления p(x) на x8-x6+x4-x2+1, а b(x) - остаток от деления p(x) на (x+1)3. Найти (b(1)+1)/(1-a(-1)).
Задачу решили:
82
всего попыток:
86
Известно, что f(f(x))=1-x. Найти f(1/2).
Задачу решили:
132
всего попыток:
145
Известно, что (TWO)2=THREE, одинаковым буквам соответствуют одинаковые цифры, разным - разные. Чему равно TWO?
Задачу решили:
30
всего попыток:
92
Пусть a, b и c - корни кубического уравнения x3+3x2+5x+7=0. Для кубического многочлена p(x) известно, что p(a)=b+c, p(b)=c+a, p(a+b+c)=-16. Найти p(0).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|