Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
102
Периметр треугольника со сторонами a, b, c равен 2. Найдите максимальное значение k такое, что: (1-a)/b + (1-b)/c + (1-c)/a ≥ k.
Задачу решили:
54
всего попыток:
92
Найдите наименьшее натуральное число, которое не может быть выражено в виде (2a-2b)/(2c-2d), где a, b, c, d - также натуральные числа.
Задачу решили:
27
всего попыток:
43
Для действительных чисел x, y, z верно:
Задачу решили:
23
всего попыток:
57
Пусть n - положительное действительное число, такое что уравнение nx2=n[x2]+x имеет 2014 действительных решений ([x] - целая часть x). Множество всех таких n находятся в минимально возможном полуинтервале (a, b].
Задачу решили:
36
всего попыток:
61
Найти сумму всех натуральных чисел a таких, что существует натуральное число b и верно: a+b2+(НОД(a,b))3=a·b·НОД(a,b)
Задачу решили:
36
всего попыток:
69
В правильном выпуклом 12-угольнике ABCDEFGHIJKL со стороной 1 провели отрезки AF, BG и CH, которые при пересечении образовали треугольник. Найдите его площадь. Ответ укажите с точностью до 5-го знака после запятой.
Задачу решили:
37
всего попыток:
61
Пусть a, b, c, d - неравные нулю действительные числа такие, что функция f(x)=(ax+b)/(cx+d) определена на R\{-d/c} и обладает свойствами: 1) f(19)=19 2) f(97)=97 3) f(f(x))=x Предположим, что имеется единственное число α такое, что α≠f(x) для всех действительных x. Найдите α.
Задачу решили:
68
всего попыток:
107
Алекс и Борис бегут супермарафон длиной 70 км. Скорость Алекса 7 км/ч, а Бориса - 10 км/ч. Однако Борис в любой момент может изменить скорость на 5 км/ч и бежать медленнее до самого конца. С какой вероятностью Алекс победит?
Задачу решили:
53
всего попыток:
71
Найти сумму всех натуральных n таких, что n2(2n-n3)+1 является целой степенью 7.
Задачу решили:
60
всего попыток:
105
Найти количество упорядоченных троек натуральных чисел a < b < c таких, что a1/2 + b1/2 + c1/2 = 20001/2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|