Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
58
Найти количество функций удовлетворяющих следующему условию: f(x2+yf(z))=xf(x)+zf(y) для всех действительных x, y и z.
Задачу решили:
66
всего попыток:
143
Найти количество троек целых чисел -10 ≤ a,b,c ≤ 10 удовлетворяющих уравнению a/(b/c)=(a/b)/c.
Задачу решили:
77
всего попыток:
127
Найти сумму всех целых чисел m и n таких, что log (nm) = log m * log n и log m и log n - целые числа.
Задачу решили:
38
всего попыток:
41
Два игрока по очереди берут одну из девяти плиток (карт, фишек), открыто пронумерованных от 1 до 9. Побеждает тот, кто первым соберет три плитки с общей суммой 15.
Задачу решили:
123
всего попыток:
153
2, 3, 7, 25, 121,... Какое следующее число?
Задачу решили:
50
всего попыток:
96
Найти количество упорядоченных троек целых положительных чисел a ≤ b ≤ c таких, что
Задачу решили:
47
всего попыток:
67
х1, x2, x3, x4, x5 - действительные числа такие, что
Задачу решили:
47
всего попыток:
55
Найдите наибольшее целое число n < 1000 такое, что существуют 2 неотрицательных целых числа, удовлетворяющих свойству: n = (a2+b2)/(ab-1).
Задачу решили:
49
всего попыток:
72
Найдите количество действительных решений уравнения:
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|