img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
+ 26

Задача 40. Соревнования по десятиборью

постоянный адрес задачи: http://www.diofant.ru/problem/144/
показать код для вставки на свой сайт >>
Задачу решили: 96
всего попыток: 315
поделиться задачей:

Задача опубликована: 01.04.09 11:43
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

В соревнованиях по десятиборью участвуют 1024 человека. Для каждого спортсмена известна его сила в каждом из видов программы, причём силы разных спортсменов различны. Соревнования проходят следующим образом: сначала все спортсмены участвуют в первом виде программы и лучшая половина из них выходит в следующий круг. Эта половина принимает участие в следующем виде и половина из них выходит в следующий круг, и т.д., пока в 10-м виде программы не будет определен победитель. Назовем спортсмена "заведомым аутсайдером", если при любом порядке видов спорта в программе он не может стать победителем. Каково минимально возможное число заведомых аутсайдеров?

 
Пожалуйста, не пишите нам, что Вы не можете решить задачу.
Если Вы не можете ее решить, значит Вы не можете ее решить :-)

Обсуждение Правила >>

Внимание! В обсуждении задачи запрещено публиковать ответы и давать подсказки.
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.