Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
28
Вовочка в понедельник купил 1 мороженое, 2 пирожных и 3 мармеладки и заплатил за это 235 рублей. Во чторник он купил 3 порции мороженого, 2 пирожных и 1 мармеладку и заплатил за это 205 рублей. Сколько рублей должен будет заплатить Вовочка в среду, если он купит 6 порций мороженого, 5 пирожных и 4 мармеладки?
Задачу решили:
9
всего попыток:
23
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?
Задачу решили:
25
всего попыток:
25
К двузначному числу слева приписали 1, а справа 8, в итоге оно увеличилось в 28 раз. Найдите сумму всех таких двузначных чисел.
Задачу решили:
24
всего попыток:
29
Найдите наибольшее натуральное число, которое в 9 раз больше своего остатка от деления на 1024.
Задачу решили:
22
всего попыток:
22
Сумма двух чисел равна 2024, если к первому числу справа дописать 1, а во втором убрать последнюю цифру 5, то в сумме новые числа дадут 2272. Найдите наибольшее из исходных чисел.
Задачу решили:
25
всего попыток:
25
В пятизначном числе зачеркнули одну цифру и сложили получившееся число с исходным. В результате получилось 54321. Найдите исходное число.
Задачу решили:
10
всего попыток:
12
В большом мешке находятся 600 пронумерованных от 0 до 599 бочонков лото. На билете лото напечатаны пять разных полей с числами. На первом поле - числа от 0 до 59, на втором - от 60 до 149, на третьем - от 150 до 269, на четвёртом - от 270 до 419 и на пятом - от 420 до 599. В процессе игры из мешка, случайным образом, вынимают бочонки. Число, которое обозначено на вынутом бочонке вычеркивается в билете лото, а бочонок возвращается в мешок. Билет лото считается выигрышным, и игра заканчивается, как только в каждом из пяти полей билета оказалось, по меньшей мере, вычеркнуто одно число. Сколько раз в среднем надо вынуть бочонок из мешка, чтобы билет лото стал выигрышным?
Задачу решили:
16
всего попыток:
24
Найдите наименьший корень уравнения ax = xa, где a = 18446744073709551616/6568408355712890625.
Задачу решили:
21
всего попыток:
23
В стозначном числе 12345678901234567890…1234567890 вычеркнули все цифры на четных местах. В полученном пятидесятизначном числе снова вычеркнули все цифры на четных местах. Такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра а. А если в том же стозначном числе вычеркнули все цифры на нечетных местах, и в полученном пятидесятизначном числе снова вычеркнули все цифры также на нечетных местах, и такое вычеркивание продолжалось до тех пор, пока не осталась одна цифра b. В ответ введите двузначное число 10а + b.
Задачу решили:
11
всего попыток:
18
В мешке есть шары 3 различных цветов. Поочередно берут один шар, смотрят на его цвет и кладут обратно в мешок. Оказалось, для того чтобы вынуть хотя-бы раз шар каждого цвета, требуется в среднем 937/105 попыток. Какое минимальное количество шаров может быть в мешке?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|