Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
147
всего попыток:
205
Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.
Задачу решили:
139
всего попыток:
540
А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.
(См. также задачу "Прямоугольник из разных квадратов".)
Задачу решили:
143
всего попыток:
210
100 пассажиров по очереди заходят в самолет, имеющий 100 мест. Первой заходит старушка и садится на любое место. Каждый следующий пассажир занимает место, указанное в его билете, если это возможно; в противном случае — любое из оставшихся свободных мест. Какова вероятность, что последнему пассажиру достанется место, указанное в его билете?
Задачу решили:
589
всего попыток:
697
"Как-то в 2007 году, — вспоминает Вовочка, — я выписал подряд все свои оценки по пению, полученные в четверти, и между некоторыми из них поставил знак умножения. Когда я перемножил числа, то получил в произведении 2007. Помню, что оценки "единица" не было. Как вы думаете, что мне поставили по пению в той четверти?" Дробных оценок в четверти не бывает!
Задачу решили:
697
всего попыток:
1073
Полтора литра минеральной воды в полтора раза дешевле, чем пол-литра сока. Сколько рублей стоит литр минеральной воды, если литр сока стоит 72 рубля?
Задачу решили:
277
всего попыток:
480
Какое наибольшее количество месяцев одного года могут иметь по 5 пятниц?
Задачу решили:
177
всего попыток:
323
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?
Задачу решили:
619
всего попыток:
1077
В подъезд одновременно зашли 2 человека, один на одном лифте поехал на 3-й этаж, второй - на другом на 9-й. Во сколько раз первый доедет быстрее второго? Примечание: в подъезде 2 одинаковых лифта, временем на ускорение/торможение пренебречь.
Задачу решили:
89
всего попыток:
280
На 101 шаре написаны различные натуральные числа от 2 до 102, а на 101 ящике — различные натуральные числа от 1 до 101. Сколькими способами можно разложить шары по ящикам (в каждый ящик по одному шару) так, чтобы номер шара делился на номер ящика?
Задачу решили:
108
всего попыток:
195
В ряд записаны 2009 различных целых положительных чисел. Известно, что для любого натурального n≤2009 сумма любых n чисел, записанных подряд, делится на n. Найдите наименьшее значение суммы всех 2009 чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|